rossby radius of deformation
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Zongshang Si ◽  
Chongguang Pang ◽  
Zhiliang Liu ◽  
Shihong Wang

Abstract In areas with rough bathymetry, the vertical structure of ocean eddies can be decomposed into “surface modes,” which are surface intensified, and exhibit a velocity of nearly zero at the bottom. Furthermore, ocean surface modes are ubiquitous. Atlases of the first surface mode (SM1) deformation radius were computed on a global 0.25°×0.25° grid using WOA2013 and the data from Generalized Digital Environment Model (GDEM). Monthly and seasonal changes were also analyzed. The annual average SM1 deformation radius was approximately 1.5 times larger than the Rossby radius of deformation; the main difference occurred in areas with rough bathymetry, including continental margins and mid-ocean ridges. The seasonal and monthly average SM1 deformation radius shows an evident annual cycle.


2021 ◽  
Author(s):  
Anna Przyborska ◽  
Daniel Rak ◽  
Agnieszka Strzelewicz ◽  
Jaromir Jakacki ◽  
Maciej Muzyka

<p>The Earth's rotation affects the water circulation in the Arctic fjords. It can be described by means of the baroclinic Rossby radius deformation (R<sub>1</sub>) expressed as the ratio of the internal wave velocity to the Coriolis parameter.</p><p>The influence of the rotational effects on the water‐mass distribution depends on the width of the fjord in relation to the baroclinic radius of deformation (Gilbert, 1983). Most often the Rossby radius deformation in the Arctic fjords is 2-3 times smaller than the width of the fjord entrance, which allows the rotation of water masses within such fjords (Cottier, 2010). Such a situation exists in the small, western fjord of Svalbard - Hornsund, where the rotation makes the Atlantic and the Arctic waters flow from the shelf into the fjord along the southern bank and flow out of the fjord along the northern bank. The impact of the Coriolis force on the Hornsund environment was observed in a sedimentary record from the last century (Pawłowska et al. 2017). Literature estimates indicate that Hornsund is a typical fjord with an internal baroclinic Rossby radius between 3.5 and 6 km (Cottier, 2005, Nilsen, 2008).</p><p>The spatial and seasonal variation of the R<sub>1</sub> in the Hornsund fjord was carried out based on data from the numerical model (Jakacki et al. 2017) for the period 2005-2010 and for the selected actual data collected during the AREX survey campaigns.  The analysis of the actual data and model data confirms the seasonal variability of the vertical water structure in the fjord, which leads to cyclic changes of the vertical <strong>Brunta-Vaisali </strong>frequency structure and consequently to seasonal variability of R<sub>1</sub>. In the Hornsund fjord seasonality strongly influences the Rossby radius, which reaches maximum values in summertime and minimum values in wintertime. Moreover, R<sub>1</sub> values can be different even at points close to each other.  The values of the baroclinic Rossby radius of deformation also differ depending on the adopted calculation method.<br><br>Calculations were carried out at the Academic Computer Centre in Gdańsk.</p><p> </p><p> </p>


Author(s):  
Pavel A. Perezhogin

AbstractIn the present work the possibility of turbulence closure applying to improve barotropic jet instability simulation at coarse grid resolutions is considered. This problem is analogous to situations occurring in eddy-permitting ocean models when Rossby radius of deformation is partly resolved on a computational grid. We show that the instability is slowed down at coarse resolutions. As follows from the spectral analysis of linearized equations, the slowdown is caused by the small-scale normal modes damping arising due to numerical approximation errors and nonzero eddy viscosity. In order to accelerate instability growth, stochastic and deterministic kinetic energy backscatter (KEBs) parameterizations and scale-similarity model were applied. Their utilization led to increase of the growth rates of normal modes and thus improve characteristic time and spatial structure of the instability.


2019 ◽  
Vol 36 (8) ◽  
pp. 1501-1520 ◽  
Author(s):  
Hengqian Yan ◽  
Ren Zhang ◽  
Gongjie Wang ◽  
Huizan Wang ◽  
Jian Chen ◽  
...  

AbstractThe multifractal fusion method has proved to be an effective algorithm to mitigate the noise of the sea surface salinity (SSS) of Soil Moisture Ocean Salinity (SMOS) mission. However, the traditional nonparametric weight function used in this method is unable to fully capture the dynamic evolution of the oceanic environment. Considering the multiscale, nonuniform, anisotropic, and flow-dependent nature of the ocean, a prototype with the so-called flexible circle (FLC) weight function or flexible ellipse (FLE) weight function with a set of predefined parameters is proposed in this paper. The improved weight functions could draw dynamic information from the sea surface temperature, Rossby radius of deformation, and surface geostrophic flow to improve the quality of the remotely sensed SSS. The validation against the in situ data indicates that the improved weight functions perform better than the traditional one with a reduced root-mean-square (RMS) and standard deviation (STD) of the differences with respect to EN 4.2.0 profiles (from 0.50 and 0.46 to 0.42 and 0.38 for FLC and 0.39 and 0.36 for FLE in the global ocean). In particular, the FLE scheme could highlight the variation of the strong currents without affecting the computational efficiency. Furthermore, this paper discusses the influences of the error distribution on the fusion results and underlines the importance of error-based adaptions for further improvements.


Atmosphere ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 2 ◽  
Author(s):  
Joshua Kastman ◽  
Patrick Market ◽  
Scott Rochette ◽  
Anthony Lupo

2015 ◽  
Vol 777 ◽  
pp. 68-96 ◽  
Author(s):  
Hugo N. Ulloa ◽  
Kraig B. Winters ◽  
Alberto de la Fuente ◽  
Yarko Niño

We explore the evolution of the gravest internal Kelvin wave in a two-layer rotating cylindrical basin, using direct numerical simulations (DNS) with a hyper-viscosity/diffusion approach to illustrate different dynamic and energetic regimes. The initial condition is derived from Csanady’s (J. Geophys. Res., vol. 72, 1967, pp. 4151–4162) conceptual model, which is adapted by allowing molecular diffusion to smooth the discontinuous idealized solution over a transition scale, ${\it\delta}_{i}$, taken to be small compared to both layer thicknesses $h_{\ell },\ell =1,2$. The different regimes are obtained by varying the initial wave amplitude, ${\it\eta}_{0}$, for the same stratification and rotation. Increasing ${\it\eta}_{0}$ increases both the tendency for wave steepening and the shear in the vicinity of the density interface. We present results across several regimes: from the damped, linear–laminar regime (DLR), for which ${\it\eta}_{0}\sim {\it\delta}_{i}$ and the Kelvin wave retains its linear character, to the nonlinear–turbulent transition regime (TR), for which the amplitude ${\it\eta}_{0}$ approaches the thickness of the (thinner) upper layer $h_{1}$, and nonlinearity and dispersion become significant, leading to hydrodynamic instabilities at the interface. In the TR, localized turbulent patches are produced by Kelvin wave breaking, i.e. shear and convective instabilities that occur at the front and tail of energetic waves within an internal Rossby radius of deformation from the boundary. The mixing and dissipation associated with the patches are characterized in terms of dimensionless turbulence intensity parameters that quantify the locally elevated dissipation rates of kinetic energy and buoyancy variance.


2014 ◽  
Vol 71 (7) ◽  
pp. 2763-2781 ◽  
Author(s):  
Stefan F. Cecelski ◽  
Da-Lin Zhang ◽  
Takemasa Miyoshi

Abstract In this study, the predictability of and parametric differences in the genesis of Hurricane Julia (2010) are investigated using 20 mesoscale ensemble forecasts with the finest resolution of 1 km. Results show that the genesis of Julia is highly predictable, with all but two members undergoing genesis. Despite the high predictability, substantial parametric differences exist between the stronger and weaker members. Notably, the strongest-developing member exhibits large upper-tropospheric warming within a storm-scale outflow during genesis. In contrast, the nondeveloping member has weak and more localized warming due to inhibited convective development and a lack of a storm-scale outflow. A reduction in the Rossby radius of deformation in the strongest member aids in the accumulation of the warmth, while little contraction takes place in the nondeveloping member. The warming in the upper troposphere is responsible for the development of meso-α-scale surface pressure falls and a meso-β surface low in the strongest-developing member. Such features fail to form in the nondeveloping member as weak upper-tropospheric warming is unable to induce meaningful surface pressure falls. Cloud ice content is nearly doubled in the strongest member as compared to its nondeveloping counterparts, suggesting the importance of depositional heating of the upper troposphere. It is found that the stronger member undergoes genesis faster due to the lack of convective inhibition near the African easterly wave (AEW) pouch center prior to genesis. This allows for the faster development of a mesoscale convective system and storm-scale outflow, given the already favorable larger-scale conditions.


2014 ◽  
Vol 44 (2) ◽  
pp. 733-741 ◽  
Author(s):  
A. Moulin ◽  
A. Wirth

Abstract A new mechanism that induces barotropic instability in the ocean is discussed. It is due to the air–sea interaction with a quadratic drag law and horizontal viscous dissipation in the atmosphere. The authors show that the instability spreads to the atmosphere. The preferred spatial scale of the instability is that of the oceanic baroclinic Rossby radius of deformation. It can only be represented in numerical models, when the dynamics at this scale is resolved in the atmosphere and ocean. The dynamics are studied using two superposed shallow water layers: one for the ocean and one for the atmosphere. The interaction is due to the shear between the two layers. The shear applied to the ocean is calculated using the velocity difference between the ocean and the atmosphere and the quadratic drag law. In one-way interaction, the shear applied to the atmosphere neglects the ocean dynamics; it is calculated using the atmospheric wind only. In two-way interaction, it is opposite to the shear applied to the ocean. In one-way interaction, the atmospheric shear leads to a barotropic instability in the ocean. The instability in the ocean is amplified, in amplitude and scale, in two-way interaction and also triggers an instability in the atmosphere.


2013 ◽  
Vol 70 (12) ◽  
pp. 3780-3798 ◽  
Author(s):  
Naftali Y. Cohen ◽  
Edwin P. Gerber, and Oliver Bühler

Abstract Perturbations to the orographic gravity wave parameterization scheme in an idealized general circulation model reveal a remarkable degree of compensation between the parameterized and the resolved wave driving: when the orographic gravity wave driving is changed, the resolved wave driving tends to change in the opposite direction, so there is little impact on the Brewer–Dobson circulation. Building upon earlier observations of such compensation, an analysis based on quasigeostrophic theory suggests that the compensation between the resolved and parameterized waves is inevitable when the stratosphere is driven toward instability by the parameterized gravity wave driving. This instability, however, is quite likely for perturbations of small meridional length scale in comparison with the Rossby radius of deformation. The insight from quasigeostrophic theory is confirmed in a systematic study with an idealized general circulation model and supported by analyses of comprehensive models. The compensation between resolved and unresolved waves suggests that the commonly used linear separation of the Brewer–Dobson circulation into components (i.e., resolved versus parameterized wave driving) may provide a potentially misleading interpretation of the role of different waves. It may also, in part, explain why comprehensive models tend to agree more on the total strength of the Brewer–Dobson circulation than on the flow associated with individual components. This is of particular relevance to diagnosed changes in the Brewer–Dobson circulation in climate scenario integrations as well.


Sign in / Sign up

Export Citation Format

Share Document