spin basis
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
W. Andrew MacFarlane

Abstract Beta-detected NMR is a type of nuclear magnetic resonance that uses the asymmetric property of radioactive beta decay to provide a “nuclear” detection scheme. It is vastly more sensitive than conventional NMR on a per nuclear spin basis but requires a suitable radioisotope. I briefly present the general aspects of the method and its implementation at TRIUMF, where ion implantation of the NMR radioisotope is used to study a variety of samples including crystalline solids and thin films, and more recently, soft matter and even room temperature ionic liquids. Finally, I review the progress of the TRIUMF βNMR program in the period 2015–2021.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1405
Author(s):  
Feng Pan ◽  
Yingwen He ◽  
Lianrong Dai ◽  
Chong Qi ◽  
Jerry P. Draayer

A diagonalization scheme for the shell model mean-field plus isovector pairing Hamiltonian in the O(5) tensor product basis of the quasi-spin SUΛ(2) ⊗ SUI(2) chain is proposed. The advantage of the diagonalization scheme lies in the fact that not only can the isospin-conserved, charge-independent isovector pairing interaction be analyzed, but also the isospin symmetry breaking cases. More importantly, the number operator of the np-pairs can be realized in this neutron and proton quasi-spin basis, with which the np-pair occupation number and its fluctuation at the J = 0+ ground state of the model can be evaluated. As examples of the application, binding energies and low-lying J = 0+ excited states of the even–even and odd–odd N∼Z ds-shell nuclei are fit in the model with the charge-independent approximation, from which the neutron–proton pairing contribution to the binding energy in the ds-shell nuclei is estimated. It is observed that the decrease in the double binding-energy difference for the odd–odd nuclei is mainly due to the symmetry energy and Wigner energy contribution to the binding energy that alter the pairing staggering patten. The np-pair amplitudes in the np-pair stripping or picking-up process of these N = Z nuclei are also calculated.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 879
Author(s):  
Michael Y. Pei ◽  
Stephen R. Clark

Neural network quantum states (NQS) have been widely applied to spin-1/2 systems, where they have proven to be highly effective. The application to systems with larger on-site dimension, such as spin-1 or bosonic systems, has been explored less and predominantly using spin-1/2 Restricted Boltzmann Machines (RBMs) with a one-hot/unary encoding. Here, we propose a more direct generalization of RBMs for spin-1 that retains the key properties of the standard spin-1/2 RBM, specifically trivial product states representations, labeling freedom for the visible variables and gauge equivalence to the tensor network formulation. To test this new approach, we present variational Monte Carlo (VMC) calculations for the spin-1 anti-ferromagnetic Heisenberg (AFH) model and benchmark it against the one-hot/unary encoded RBM demonstrating that it achieves the same accuracy with substantially fewer variational parameters. Furthermore, we investigate how the hidden unit complexity of NQS depend on the local single-spin basis used. Exploiting the tensor network version of our RBM we construct an analytic NQS representation of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state in the xyz spin-1 basis using only M=2N hidden units, compared to M∼O(N2) required in the Sz basis. Additional VMC calculations provide strong evidence that the AKLT state in fact possesses an exact compact NQS representation in the xyz basis with only M=N hidden units. These insights help to further unravel how to most effectively adapt the NQS framework for more complex quantum systems.


2017 ◽  
Vol 15 (04) ◽  
pp. 1750028 ◽  
Author(s):  
Thiago Prudêncio

Generation of Aharonov–Bohm (AB) phase has achieved a state-of-the-art in mesoscopic systems with manipulation and control of the AB effect. The possibility of transfer information encoded in such systems to nonclassical states of light increases the possible scenarios where the information can be manipulated and transferred. In this paper, we propose a quantum transfer of the AB phase generated in a spintronic device, a topological spin transistor (TST), to an quantum optical device, a coherent state superposition in high-Q cavity and discuss optical and spin-optical superpositions in the presence of an AB phase. We demonstrate that the AB phase generated in the TST can be transferred to the coherent state superposition, considering the interaction with the spin state and the quantum optical manipulation of the coherent state superposition. We show that these cases provide examples of two-qubit states modulated by AB effect and that the phase parameter can be used to control the degree of rotation of the qubit state. We also show under a measurement on the spin basis, an optical one-qubit state that can be modulated by the AB effect. In these cases, we consider a dispersive interaction between a coherent state and a spin state with an acquired AB phase and also discuss a dissipative case where a given Lindblad equation is achieved and solved.


2013 ◽  
Vol 87 (1) ◽  
Author(s):  
Sergio Caracciolo ◽  
Fabrizio Palumbo
Keyword(s):  

2011 ◽  
Vol 26 (22) ◽  
pp. 1613-1619 ◽  
Author(s):  
ION I. COTĂESCU

It is shown that on the de Sitter spacetime the global behavior of the free Dirac spinors in momentum representation is determined by several phase factors which are functions of momentum with special properties. Such suitable phase functions can be chosen for writing down the free Dirac quantum modes of the spin basis that are well-defined even for the particles at rest in the moving local charts where the modes of the helicity basis remain undefined. Under quantization, these modes lead to a basis in which the one-particle operators keep their usual forms apart from the energy operator which lays out a specific term depending on the concrete phase function one uses.


Author(s):  
P. Bandyopadhyay

The exchange phase for two spins is studied here from the point of view of the quantization of a fermion in the framework of Nelson’s stochastic mechanics. This introduces a direction vector attached to a space–time point depicting the spin degrees of freedom. In this formalism, a fermion appears as a scalar particle attached with a magnetic-flux quantum, and a quantum spin can be described in terms of an SU(2) gauge bundle. This helps us to recast the Berry–Robbins formalism where the exchange phase appears as an unfamiliar geometric phase arising out of the ‘exchange rotation’ in a transported spin basis in terms of gauge currents. However, for polarized fermions, the exchange phase is found to be given by the Berry phase.


Sign in / Sign up

Export Citation Format

Share Document