fault activation
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 32)

H-INDEX

14
(FIVE YEARS 4)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Juntao Chen ◽  
Yi Zhang ◽  
Kai Ma ◽  
Daozeng Tang ◽  
Hao Li ◽  
...  

To further explore the crack evolution of floor rock mass, the mechanism of fault activation, and water inrush, this paper analyzes the crack initiation and propagation mechanism of floor rock mass and obtains the initiation criteria of shear cracks, layered cracks, and vertical tension cracks. With the help of simulation software, the process of fault activation and crack evolution under different fault drop and dip angles was studied. The results show that the sequence of crack presented in the mining rock mass is vertical tension cracks, shear cracks, and layered cracks. The initiation and propagation of the shear cracks at the coal wall promote the fault activation, which tends to be easily caused at a specific inclination angle between 45° and 75°. The fault drop has no obvious impact on the evolution of floor rock cracks and will not induce fault activation. However, the increase of the drop will cause the roof to collapse, reducing the possibility of water inrush disaster. Research shows that measures such as adopting improved mining technology, reducing mining disturbance, increasing coal pillar size, and grouting before mining as reinforcement and artificial forced roof can effectively prevent water inrush disasters caused by deep mining due to fault activation.


2021 ◽  
Author(s):  
Gang Hui ◽  
Shengnan Chen ◽  
Fei Gu

Abstract Recently, the elevated levels of seismicity activities in Western Canada have been demonstrated to be linked to hydraulic fracturing operations that developed unconventional resources. The underlying triggering mechanisms of hydraulic fracturing-induced seismicity are still uncertain. The interactions of well stimulation and geology-geomechanical-hydrological features need to be investigated comprehensively. The linear poroelasticity theory was utilized to guide coupled poroelastic modeling and to quantify the physical process during hydraulic fracturing. The integrated analysis is first conducted to characterize the mechanical features and fluid flow behavior. The finite-element simulation is then conducted by coupling Darcy's law and solid mechanics to quantify the perturbation of pore pressure and poroelastic stress in the seismogenic fault zone. Finally, the Mohr-coulomb failure criterion is utilized to determine the spatial-temporal faults activation and reveal the trigger mechanisms of induced earthquakes. The mitigation strategy was proposed accordingly to reduce the potential seismic hazards near this region. A case study of ML 4.18 earthquake in the East Shale Basin was utilized to demonstrate the applicability of the coupled modeling and numerical simulation. Results showed that one inferred fault cut through the Duvernay formation with the strike of NE20°. The fracture half-length of two wells owns an average value of 124 m. The brittleness index deriving from the velocity logging data was estimated to be a relatively higher value in the Duvernay formation, indicating a geomechanical bias of stimulated formation for the fault activation. The coupled poroelastic simulation was conducted, showing that the hydrologic connection between seismogenic faults and stimulated well was established by the end of the 38th stage completion for the east horizontal well. The simulated coulomb failure stress surrounding the fault reached a maximum of 4.15 MPa, exceeding the critical value to cause the fault slip. Hence the poroelastic effects on the inferred fault were responsible for the fault activation and triggered the subsequent ML 4.18 earthquake. It is essential to optimize the stimulation site selection near the existing faults to reduce risks of future seismic hazards near the East Shale Basin.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dingding Zhang ◽  
Yanyan Duan ◽  
Wengang Du ◽  
Jing Chai

The impact ground pressure in coal mining is closely related to the fault structure, and the fault activation pattern is different when the working face advances along the upper and lower plates of the fault, respectively. In this paper, the F16 positive fault in the southern part of Yima coalfield is used as a prototype to carry out the physical similar model test simulating the process of the working face advancing from the upper and lower plates of the fault, and PPP-BOTDA optical fiber sensing technique is used to study the overburden deformation law and fault activation law when the working face is located in the upper and lower plates of the fault, respectively. The study shows that the key stratum breakage is closely related to the fault movement, and the shear stress concentration range occurs within the key stratum. The additional shear stress concentration at the fault surface caused by the working face advancing in the lower plate is much larger than that at the upper plate, which is the reason for the serious fault destabilization phenomenon at the lower plate. The upper rock layer on the fault face is affected by the mining action of the working face before the lower one, and the working face is affected by the fault in a larger range when advances in the lower plate than that in the upper plate, and the risk of fault activation instability occurs earlier when the working face advances in the lower plate than that in the upper plate. The distributed optical fiber sensing technology is used to verify the basic conclusions that the impact of the working face advancing from the lower plate is much greater than that from the upper plate, which is more likely to cause fault activation. The preferential placement of the working face in the upper plate in the fault area will be beneficial to mine pressure control. The results of the study provide an experimental basis for the application of distributed optical fiber sensing technology to the study of fault activation law.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sitao Zhu ◽  
Decheng Ge ◽  
Fuxing Jiang ◽  
Cunwen Wang ◽  
Dong Li ◽  
...  

With the development of faults in many coalfields, many large faults will form a relatively independent area, forming regional tectonic stress concentration. Under the influence of mining, it is easy to induce fault activation, produce mine tremor, and then induce rock burst. Through field investigation, theoretical analysis, numerical simulation, and engineering verification, the overburden movement model of No. 3504 working face square and fault activation in Liangbaosi Coal Mine was established. The stress variation and energy release law of working face advance and fault area were analyzed, and the mechanism of rock burst under the coupling action of working face square and regional tectonic stress was revealed. The results show that the regional stress adjustment and fault activation are caused by the large-scale overall movement of overburden during the working face square, and there is a peak value of elastic energy release during the fault activation, which is easy to produce large energy mine earthquake. The energy level of the daily maximum energy event is higher than that of the initial mining stage in the square period, and the location of on-site large energy microseismic event is basically consistent with the predicted fault strike. The study provides a theoretical basis for the prevention and control of rock burst during the working face square under the condition of regional tectonic stress.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lyu Pengfei ◽  
Lu Jiabin ◽  
Wang Eryu ◽  
Chen Xuehua

Coal mine rockburst is closely related to the complex geological structure. Understanding the criterion of the fault activation instability and the disaster-causing mechanism of rockburst under the influence of mining is the theoretical premise and important guarantee of safe and efficient coal mining. In this paper, based on the theory of key stratum, the mechanical model of fault slip instability in the normal fault during the hanging wall mining was established, and the instability criterion was derived. It is concluded that the fault slip instability of the hanging wall is mainly controlled by two factors: (1) the distance between coal seams and key stratum and (2) the distance between working face and fault. Moreover, these two factors have an inverse relation to the occurrence of rockburst. Subsequently, three conceptual models of rockburst induced by the fault stress transfer, stress concentration of coal pillars, and fault structural instability were proposed. Based on the rock mechanics theory, the rockburst carrier system model of “roof-coal seam-floor” near the fault was established. The mechanical essence of fault rockburst was obtained as follows: under the action of fault, the static load of fault coal pillar was increased and superimposed with the fault activation dynamic load, leading to high-strength rockburst disaster. Based on the occurrence mechanism of fault rockburst, the monitoring and prevention concept and technical measures were proposed in three aspects, including the monitoring and control of fault activation dynamic loads, the monitoring of high static load in fault coal pillar and stress release, and the strengthening roadway support. These prevention and control measures were verified in the panel 103down02 of the Baodian Coal Mine in engineering, and the effectiveness of these measures was proved.


Sign in / Sign up

Export Citation Format

Share Document