scholarly journals Rock Burst Mechanism under Coupling Action of Working Face Square and Regional Tectonic Stress

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sitao Zhu ◽  
Decheng Ge ◽  
Fuxing Jiang ◽  
Cunwen Wang ◽  
Dong Li ◽  
...  

With the development of faults in many coalfields, many large faults will form a relatively independent area, forming regional tectonic stress concentration. Under the influence of mining, it is easy to induce fault activation, produce mine tremor, and then induce rock burst. Through field investigation, theoretical analysis, numerical simulation, and engineering verification, the overburden movement model of No. 3504 working face square and fault activation in Liangbaosi Coal Mine was established. The stress variation and energy release law of working face advance and fault area were analyzed, and the mechanism of rock burst under the coupling action of working face square and regional tectonic stress was revealed. The results show that the regional stress adjustment and fault activation are caused by the large-scale overall movement of overburden during the working face square, and there is a peak value of elastic energy release during the fault activation, which is easy to produce large energy mine earthquake. The energy level of the daily maximum energy event is higher than that of the initial mining stage in the square period, and the location of on-site large energy microseismic event is basically consistent with the predicted fault strike. The study provides a theoretical basis for the prevention and control of rock burst during the working face square under the condition of regional tectonic stress.

2019 ◽  
Vol 12 (1) ◽  
pp. 37 ◽  
Author(s):  
Feng Cui ◽  
Yanbin Yang ◽  
Xingping Lai ◽  
Chong Jia ◽  
Pengfei Shan

In order to study the influence of advancing speed and stoping time of a coal face on the scale and frequency of rock burst, the energy release characteristics of an overburden fracture under six advancing speeds and four stoping times are studied by theoretical analysis and similar simulation experiments. The distribution characteristics of microseismic events before and after stoppage are compared, and the load/unload response ratio is introduced to analyze the relationship between the synergistic effect of advancing speed and stoping time and the characteristics of microseismic events in coal and rock mass. The mechanism of rock burst induced by the advancing speed and stoping time effect in the working face is studied, and the coordinated regulation and mitigation of advancing speed and stoping time are analyzed and completed. The results show that the effect of advancement speed and stoping time is very important to the energy release of overburden. The energy released by microseismic events during stoping is exponentially related to the advancing speed. The change of advancing speed causes the change of microseismic event characteristics, reflecting the evolution process of overburden structure and its energy. During stoping, the secondary microseismic events disturbed by mining occur frequently, leading to the significant difference of energy released by microseismic events during stoping. After stoping, the microseismic energy is more than four times higher than that during the stop period, and the risk of coal seam impact is high during the stope period. The synergetic change of advancement speed and stoping time changes the cycle of energy accumulation and release. The response ratio of loading and unloading considering the effect of advancement speed and stoping time is established by using the corresponding ratio of loading and unloading, and the impact risk of the coal seam is quantitatively analyzed. Based on the monitoring and analysis of microseismic events, the safety mining index of coordinated control with the energy of a single microseismic event of 180 J is established, and the best advancing speed of the working face is determined to be 4 m/d. According to the corresponding ratio of loading and unloading, the reasonable stoping time of different advancing speeds and the corresponding advancing speed of different stoping times after the resumption of mining are determined, so as to provide a reference for the safe and efficient mining of similar rock burst mines.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shitan Gu ◽  
Zhimin Xiao ◽  
Bangyou Jiang ◽  
Ruifeng Huang ◽  
Peng Shan

Stress concentration caused by tectonic stress and mining disturbance in coal mines induces a unique type of rock burst. No. 3201 working face controlled by an anticline structure in the Shandong mining area is used as the research background. The formation mechanism for anticlines is analyzed. Theoretical research shows that the bigger the tectonic couple is, the smaller the foundation stiffness, and the greater the bending degree and elastic strain energy of the coal will be. The distribution characteristics of abutment pressure and maximum principle stress in anticlinal control areas are analyzed using UDEC numerical software. The results show that rock bursts result from interactions between abutment pressure and residual tectonic stress. The “connection-overlay-separation” phenomenon of abutment pressure presents with working face advancement. Furthermore, the energy criterion for rock burst initiation is established based on the energy principle. Residual energy “E0−EC” and rock burst danger characteristics during mining are discussed. Based on the simulation results, microseismic monitoring data for No. 3201 working face are analyzed, and the law of microseismic energy is consistent with the variation law for the residual energy “E0−EC” at the peak of the simulated abutment pressure. The microseismic energy and frequency are higher during mining, increasing the risk of rock burst events. It can provide scientific basis for prevention and control of rock burst.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Zhimin Xiao ◽  
Jun Liu ◽  
Shitan Gu ◽  
Mingqing Liu ◽  
Futian Zhao ◽  
...  

Roadway floor rock burst is an important manifestation of rock bursts in deeply buried mines. With the increase of mining depth and mining intensity, rock burst disasters in the roadway floor such as floor heaves are becoming more serious. The article investigated the roadway floor severe heave caused by floor rock burst during excavation of the No. 3401 working face, which was controlled by an anticlinal structure and deep mining in Shandong Mine, China. Firstly, by analyzing geological conditions of the working face, roadway support parameters, and characteristics of coal and rock, it was revealed that high tectonic stress and high crustal stress were main causes of the floor rock burst. Secondly, based on the Theory of Mechanics and Theory of Energy, the energy conversion process in the roadway floor was discussed, and the rock burst condition caused by elastic energy in the roadway floor was analyzed. The failure characteristics of roadway-surrounding rock were also inspected, using a borehole recorder. The roof and sidewalls of roadway mainly contained fissures and cracks, whereas cracks and broken areas are distributed in the roadway floor. Finally, based on the deformation and failure characteristics of roadway-surrounding rock, a method termed “overbreaking-bolting and grouting-backfill” was proposed to control roadway floor rock burst. The method was tested in the field, and the results showed that it could effectively control the deformation of roadway floor and rock burst, guaranteeing the stability of roadway floor. This impact control method for the roadway floor can provide a reference for the prevention and control of roadway rock burst in mines with similar geological conditions.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4780 ◽  
Author(s):  
Feng Cui ◽  
Shuai Dong ◽  
Xingping Lai ◽  
Jianqiang Chen ◽  
Jiantao Cao ◽  
...  

The dynamic disasters caused by the failure of hard roof in the process of mining coal seriously affect the safe production in coal mines. Based on the W1123 mining coal working face of Kuangou coal mine, the physical similar material simulation experiment and acoustic emission (AE) monitoring method are used to study the failure law and AE characteristics of overburden in the process of coal mining. The stress evolution law is revealed through numerical simulation, the dangerous areas and rock burst hazard under the repeated mining with hard roof are studied combined with microseismic monitoring on site. The results show that the energy of W1123 working face released by the overburden damage under B4-1 solid coal is higher than that of the gob, and the peak value of the AE energy appears near the W1145 open-off cut. Through the statistics of the AE data, the large energy rate of AE event is defined, and the AE events with large energy rate appear in the scale of 82.4–231.2 cm within the model. This area is shown as a stress superposition area according to the numerical simulation. On the basis of comparing with the characteristics of energy distribution in the field, it is considered that the main control factors of rock burst in this area are hard roof of the working face and the stress concentration caused by the repeated mining. It provides a scientific guidance for the prevention and control measures of rock burst in this type of mining condition.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Quansen Wu ◽  
Peng Kong ◽  
Quanlin Wu ◽  
Xinggang Xu ◽  
Xingyu Wu ◽  
...  

Fault activation triggers local deformation and dislocation, releasing a large amount of energy that can easily cause mining disasters, such as rock bursts and roadway instability. To study the changing characteristics of overburden structures and the evolution law of mining-induced stress as panel advances towards a fault from a footwall, two similar models were established, namely, a simulation experimental model and a numerical simulation model. In addition, the relationship among mining, mining stress, and rock bursts induced by fault activation was investigated. The results of this study reveal that when the working face is 30 m away from the fault, the high-position rock mass near the fault turns to the goaf where the fault is activated, and the two walls display relatively obvious dislocation. During the process of footwall panel mining to the fault, the abutment stress of the coal pillar tends to increase initially, followed by a decrease. When the working face is 20 m away from the fault, the abutment stress ahead of the working face reaches its maximum. When the width of the coal pillar is within the range of 10–40 m, the coal pillar accumulates a large amount of energy, and the working face affected by the fault easily induces a rock burst. Before fault activation, disturbances arising from the mining activities destroy the equilibrium stress environment of the rock system surrounding the fault, and the fault continuously accumulates energy. When the accumulated energy reaches a certain threshold, under the action of normal stress or shear stress, the fault will be activated, and a large amount of energy will be released, which can easily induce a rock burst. The research results in this paper provide a scientific basis for the classification, prediction, and prevention of rock bursts under similar geological conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Nan Zhou ◽  
Hengfeng Liu ◽  
Jixiong Zhang ◽  
Hao Yan

Coal mining under hard roofs is jeopardized by rock burst-induced hazards. In this paper, mechanisms of hard roof rock burst events and key techniques for their prevention are analyzed from the standpoint of energy evolution within geological conditions typical of the hard roofs found in Chinese coal mines. Equations used to calculate the total strain energy densities of the coal-rock mass and hard roof working face are derived. Moreover, several failure-causing energy evolution rules are analyzed under various conditions. Various rock roof and coal mass thicknesses and strengths are considered, and a method of preventing hard roof rock burst events is proposed. The results obtained show that rock burst events can be facilitated by high stress concentrations, significant accumulation of strain energy in the coal-rock mass, and rapid energy release during roof breakage. The above conditions are subdivided into two classes: energy accumulation and energy release. The total strain energies of the coal mass and working faces in the roof are positively correlated with the roof thickness, roof strength, and coal mass strength. The coal mass strength primarily influences the overall accumulation of energy in the working face, and it also has the largest effect on the total energy release (i.e., the earthquake magnitude).


2012 ◽  
Vol 2012 ◽  
pp. 1-16
Author(s):  
Yudong Wu ◽  
Quanlin Hou ◽  
Yiwen Ju ◽  
Daiyong Cao ◽  
Junjia Fan ◽  
...  

29 oriented and 10 nonoriented coal samples are collected in the study from three different regions of the Huaibei coalfield, eastern China, and their vitrinite reflectance indicating surface (RIS) parameters are systematically calculated and analyzed. Using the available methods, Kilby’s transformations and RIS triaxial orientations are obtained. The magnitudes and orientations of the RIS axes of the three regions were respectively projected on the horizontal planes and vertical sections. The results show that the samples in high deformed region have significant anisotropy magnitudes (higher Bw/Rmax and Ram values) with a biaxial negative style, whereas the samples in the slightly deformed area have unimpressive anisotropy magnitudes with a biaxial negative style. Thermal metamorphism superposed might enhance the complication and variation of RIS style. RIS projection analysis deduced that the RIS orientation is mainly controlled by regional tectonic stress, and likely influenced by deformation mechanisms of coal.


2005 ◽  
Vol 23 (10) ◽  
pp. 3365-3373 ◽  
Author(s):  
J. Birn ◽  
M. Hesse

Abstract. Magnetic reconnection is the crucial process in the release of magnetic energy previously stored in the magnetotail in association with substorms. However, energy transfer and dissipation in the vicinity of the reconnection site is only a minor part of the energy conversion. We discuss the energy release, transport, and conversion based on large-scale resistive MHD simulations of magnetotail dynamics and more localized full particle simulations of reconnection. We address in particular, where the energy is released, how it propagates and where and how it is converted from one form into another. We find that Joule (or ohmic) dissipation plays only a minor role in the overall energy transfer. Bulk kinetic energy, although locally significant in the outflow from the reconnection site, plays a more important role as mediator or catalyst in the transfer between magnetic and thermal energy. Generator regions with potential auroral consequences are located primarily off the equatorial plane in the boundary regions of the plasma sheet.


Sign in / Sign up

Export Citation Format

Share Document