episomal maintenance
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

2020 ◽  
Vol 94 (16) ◽  
Author(s):  
Timra Gilson ◽  
Sara Culleton ◽  
Fang Xie ◽  
Marsha DeSmet ◽  
Elliot J. Androphy

ABSTRACT Several serine and threonine residues of the papillomavirus early E2 protein have been found to be phosphorylated. In contrast, only one E2 tyrosine phosphorylation site in BPV-1 (tyrosine 102) and one in HPV-16/31 (tyrosine 138) site have been characterized. Between BPV-1 and HPV-31 E2, 8 of the 11 tyrosines are conserved in the N-terminal domain, suggesting that phosphorylation of tyrosines has an essential role in E2 biology. In this study, we examine the effect of Y102 phosphorylation on HPV-31 E2 biology. Y102 proteins mutated either to the potential phospho-mimetic glutamic acid (Y102E) or to the nonphosphorylated homologue phenylalanine (Y102F) remain nuclear; however, Y102E is more associated with the nuclear matrix fraction. This is consistent with the inability of Y102E to bind TopBP1. Both BPV-1 and HPV-31 Y102E are similar in that neither binds the C terminus of Brd4, but in all other aspects the mutant behaves differently between the two families of papillomaviruses. BPV-1 Y102E was unable to bind E1 and did not replicate in a transient in vitro assay, while HPV-31 Y102E binds E1 and was able to replicate, albeit at lower levels than wild type. To examine the effect of E2 mutations under more native-like infection conditions, a neomycin-selectable marker was inserted into L1/L2 of the HPV-31 genome, creating HPV-31neo. This genome was maintained in every cell line tested for at least 50 days posttransfection/infection. Y102E in both transfection and infection conditions was unable to maintain high episome copy numbers in epithelial cell lines. IMPORTANCE Posttranslational modifications by phosphorylation can change protein activities, binding partners, or localization. Tyrosine 102 is conserved between delta papillomavirus BPV-1 and alpha papillomavirus HPV-31 E2. We characterized mutations of HPV-31 E2 for interactions with relevant cellular binding partners and replication in the context of the viral genome.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 311
Author(s):  
Sadie Rice ◽  
Seong-man Kim ◽  
Cynthia Rodriguez ◽  
William Songock ◽  
Gaurav Raikhy ◽  
...  

Persistent infection by human papillomaviruses (HPVs), small, double-stranded DNA viruses that infect keratinocytes of the squamous epithelia, can lead to the development of cervical and other cancers. The viral oncoprotein E7 contributes to viral persistence in part by regulating host gene expression through binding host transcriptional regulators, although mechanisms responsible for E7-mediated transcriptional regulation are incompletely understood. Type I IFN signaling promotes the expression of anti-viral genes, called interferon-stimulated genes (ISGs), through the phosphorylation and activation of STAT1. In this study, we have observed that the CR3 domain of E7 contributes to the episomal maintenance of viral genomes. Transcriptome analysis revealed that E7 transcriptionally suppresses a subset of ISGs but not through regulation of STAT1 activation. Instead, we discovered that E7 associates with Mediator kinase CDK8 and this is correlated with the recruitment of CDK8 to ISG promoters and reduced ISG expression. E7 fails to suppress ISGs in the absence of CDK8, indicating that CDK8 function contributes to the suppression of ISGs by E7. Altogether, E7/CDK8 association may be a novel mechanism by which E7 inhibits innate immune signaling.


2019 ◽  
Vol 30 (22) ◽  
pp. 2761-2770
Author(s):  
Xiao-Yin Wang ◽  
Xi Zhang ◽  
Tian-Yun Wang ◽  
Yan-Long Jia ◽  
Dan-Hua Xu ◽  
...  

Matrix attachment regions (MARs) can mediate the replication of vector episomes in mammalian cells; however, the molecular mode of action remains unclear. Here, we assessed the characteristics of MARs and the mechanism that mediates episomal vector replication in mammalian cells. Five shortened subfragments of β-interferon MAR fragments were cloned and transferred into CHO cells, and transgene expression levels, presence of the gene, and the episomal maintenance mechanism were determined. Three shortened MAR derivatives (position 781–1320, 1201–1740, and 1621–2201) retained full MAR activity and mediated episomal vector replication. Moreover, the three shortened MARs showed higher transgene expression levels, greater efficiency in colony formation, and more persistent transgene expression compared with those of the original pEPI-1 plasmid, and three functional truncated MARs can bind to SAF-A MAR-binding protein. These results suggest that shortened MARs are sufficient for replication and maintenance of episomes in CHO cells.


2016 ◽  
Vol 44 (8) ◽  
pp. 3675-3694 ◽  
Author(s):  
Advaitha Madireddy ◽  
Pravinkumar Purushothaman ◽  
Christopher P. Loosbroock ◽  
Erle S. Robertson ◽  
Carl L. Schildkraut ◽  
...  

Abstract Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases.


2009 ◽  
Vol 4 (2) ◽  
pp. 239-250 ◽  
Author(s):  
Bhaskar Thyagarajan ◽  
Kelly Scheyhing ◽  
Haipeng Xue ◽  
Andrew Fontes ◽  
Jon Chesnut ◽  
...  

2008 ◽  
Vol 89 (11) ◽  
pp. 2843-2850 ◽  
Author(s):  
Rhoswyn Griffiths ◽  
Sally M. Harrison ◽  
Stuart Macnab ◽  
Adrian Whitehouse

Herpesvirus saimiri (HVS) establishes a persistent infection in which the viral genome persists as a circular non-integrated episome. ORF73 tethers HVS episomes to host mitotic chromosomes, allowing episomal persistence via an interaction with the chromosome-associated protein, MeCP2. Here we demonstrate that ORF73 also interacts with the linker histone H1 via its C terminus, suggesting it associates with multiple chromosome-associated proteins. In addition, we show that the C terminus is also required for the ability of ORF73 to bind the terminal repeat region of the HVS genome. These results suggest that the ORF73 C terminus contains all the necessary elements required for HVS episomal persistence. Using a range of ORF73 C terminus deletions to rescue the episomal maintenance properties of a HVSΔ73 recombinant virus, we show that a C terminus region comprising residues 285–407 is sufficient to maintain the HVS episome in a dividing cell population.


2008 ◽  
Vol 83 (1) ◽  
pp. 273-282 ◽  
Author(s):  
Jiayu Gao ◽  
Judy M. Coulson ◽  
Adrian Whitehouse ◽  
Neil Blake

ABSTRACT Herpesvirus saimiri (HVS) establishes a persistent infection in squirrel monkeys by maintaining its episome within T lymphocytes. The product of open reading frame 73 (ORF73) plays a key role in episomal maintenance and is the functional homologue of Epstein-Barr virus EBNA1 and Kaposi's sarcoma-associated herpesvirus LANA1 proteins. There is little sequence homology among these proteins, although all contain a central domain of repeating amino acids. The repeat domains of EBNA1 and LANA1 enhance the stability of these proteins and cause a retardation in self-protein synthesis, leading to poor recognition by CD8+ cytotoxic T lymphocytes (CTL). The HVS ORF73 repeat domain is composed of a glutamic acid and glycine repeat linked to a glutamic acid and alanine repeat (EG-EA repeat). Here we show that the EG-EA repeat similarly causes a reduction in the recognition of ORF73 by CD8+ CTL. However, deletion of the EG-EA repeat from HVS ORF73 had no affect on the stability of the protein or its rate of translation. In contrast, the presence of the EG-EA repeat was found to decrease the steady-state levels of ORF73 mRNA. The inhibitory properties of the EG-EA repeat were maintained when transferred to a heterologous protein, and manipulation of the repeat revealed that the motif EEAEEAEEE was sufficient to cause a reduction in recognition of ORF73 by CD8+ CTL. Thus, the EG-EA repeat of HVS ORF73 plays a role in immune evasion but utilizes a mechanism distinct from that of the EBNA1 and LANA1 repeats.


Sign in / Sign up

Export Citation Format

Share Document