conductive fabric
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 57)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
pp. 152808372110608
Author(s):  
M. S. Yogendra ◽  
M.V. Mallikarjuna Reddy ◽  
S.N. Kartik ◽  
K. Mohanvelu ◽  
F.V. Varghese ◽  
...  

Development of a gel-free bio-potential electrode for the wearable health monitoring applications is a challenging goal. A conductive fabric electrode can replace the traditional conductive gel electrode. This paper describes the development of a conductive fabric electrode with regard to its potential use for electrocardiogram (ECG) acquisition. Since direct contact between the conductive fabric and human skin will be involved, an investigation on the effect of perspiration on the electrical conductivity of fabric is critical. Hence, the developed electrode was treated with alkaline (pH=8.0) and acidic (pH=4.3) perspiration for 3, 8 and 40 h to study the effect of perspiration on the conductivity and surface morphology. The acquired ECG signals were analysed with respect to morphology and frequency distribution. Conductivity tests were carried out on the perspiration-treated test electrodes by two probe method and surface resistivity meter. The ECG signals of volunteers were also recorded. The results showed a slight decrease in conductivity but without affecting the morphology and the quality of ECG signal. Leached silver content in the acid perspiration-treated solution was found to be 0.117 ppm as determined by Atomic absorption spectroscopy. The result shows that soft conducting textile materials can indeed be used as an electrode for ECG acquisition. This is a novel type of gel-free fabric electrode for long term wearable health monitoring applications including space application.


Author(s):  
Haojun Liu ◽  
Xianmei Zhong ◽  
Xin He ◽  
Yushan Li ◽  
Ningjing Zhou ◽  
...  

2021 ◽  
Vol 2076 (1) ◽  
pp. 012098
Author(s):  
Shasha Lv ◽  
Tao Huang ◽  
Hao Yu

Abstract Triboelectric nanogenerator (TENG) is favorable for harvesting adaptable and complex biomechanical energy in our daily life. Here, silicon rubber/expandable microsphere TENG was achieved by spin-coating a mixture of expandable microspheres and silicon rubber on a flat plate with conductive fabric. Furthermore, self-made flexible TPU/MWCNTs electrodes replaced commercial conductive fabric to make TENG more adapt to skin of human body. Finally, the optimized TENG in this work demonstrates energy harvesting capabilities and can be applied in self-powered sensor systems and provides new dimensions for biomechanical energy harvesters and wearable self-powered electronics.


Author(s):  
Francisco Roman ◽  
Daniel Rodriguez ◽  
Mahbubur Rahman ◽  
Andre Lobato ◽  
Jorge Rodriguez ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5380
Author(s):  
Franck Kimetya Byondi ◽  
Youchung Chung

This paper presents the design of a 920 MHz Ultra High Frequency (UHF) band radio frequency identification (RFID) conductive fabric tag antenna. The DC (Direct Current) resistance and impedance of the conductive fabric are measured by a DC multimeter and by a network analyzer at a UHF frequency band. The conductivities of the fabrics are calculated with their measured DC resistance and impedance values, respectively. The conductivities of the fabric are inserted into the CST simulation program to simulate the fabric tag antenna designs, and the results of the tag designs with two conductivities are compared. Two fabric UHF RFID tag antennas with a T-Matching structure, one with the name-tag size of 80 × 40 mm, and another with 40 × 23 are simulated and measured the characteristics of tag antennas. The simulated and measured results are compared by reflection coefficient S11, radar cross-section and reading range. The reading range of the 80 × 40 mm fabric tag antenna is about 4 m and 0.5 m for the 40 × 23 size tag. These fabric tags can be easily applied to an entrance control system as they can be attached to other fabrics and clothes.


Sign in / Sign up

Export Citation Format

Share Document