construction progress monitoring
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 2)

Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Enrique Aldao ◽  
Luis M. González-deSantos ◽  
Humberto Michinel ◽  
Higinio González-Jorge

In this work, a real-time collision avoidance algorithm was presented for autonomous navigation in the presence of fixed and moving obstacles in building environments. The current implementation is designed for autonomous navigation between waypoints of a predefined flight trajectory that would be performed by an UAV during tasks such as inspections or construction progress monitoring. It uses a simplified geometry generated from a point cloud of the scenario. In addition, it also employs information from 3D sensors to detect and position obstacles such as people or other UAVs, which are not registered in the original cloud. If an obstacle is detected, the algorithm estimates its motion and computes an evasion path considering the geometry of the environment. The method has been successfully tested in different scenarios, offering robust results in all avoidance maneuvers. Execution times were measured, demonstrating that the algorithm is computationally feasible to be implemented onboard an UAV.


Author(s):  
Reihaneh Samsami ◽  
Amlan Mukherjee ◽  
Colin N. Brooks

The transportation infrastructure management sector lacks automated procedures that can help it find and resolve the performance deviations. The objective of this research is to illustrate the mapping of Unmanned Aerial System (UAS) collected photogrammetric data to building information modeling (BIM) parameters, and their application for automated construction progress monitoring and the generation of as-built models. The goal is to support project managers to estimate project progress during highway construction. As a part of ongoing work, this paper takes into account 4D (3D + time) data that is acquired from 3D surface digital elevation models, point clouds, LiDAR data, and orthographic photos. It maps these 4D data onto BIM parameters to create as-built models of the project at different intervals. A comparison between as-planned and as-built models using the earned value management method is employed to develop metrics that can be used for indicating cost and schedule deviations during construction. The mapping methodology introduced in this paper is illustrated using an ongoing highway construction project case study. The main contribution of this paper is the organization, processing, and integration of UAS data with BIM data structures and project management workflows. The research outcomes will assist project managers in an easy and quick identification of potential performance problems and support the project management decision-making process.


2021 ◽  
Vol 11 (17) ◽  
pp. 7840
Author(s):  
Jingguo Xue ◽  
Xueliang Hou ◽  
Ying Zeng

With the spread of camera-equipped devices, massive images and videos are recorded on construction sites daily, and the ever-increasing volume of digital images has inspired scholars to visually capture the actual status of construction sites from them. Three-dimensional (3D) reconstruction is the key to connecting the Building Information Model and the project schedule to daily construction images, which enables managers to compare as-planned with as-built status and detect deviations and therefore monitor project progress. Many scholars have carried out extensive research and produced a variety of intricate methods. However, few studies comprehensively summarize the existing technologies and introduce the homogeneity and differences of these technologies. Researchers cannot clearly identify the relationship between various methods to solve the difficulties. Therefore, this paper focuses on the general technical path of various methods and sorts out a comprehensive research map, to provide reference for researchers in the selection of research methods and paths. This is followed by identifying gaps in knowledge and highlighting future research directions. Finally, key findings are summarized.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tirth Patel ◽  
Brian H.W. Guo ◽  
Yang Zou

PurposeThis article aims to explore valuable insights into the construction progress monitoring (CPM) research domain, which include main research topics, knowledge gaps and future research themes. For a long time, CPM has been significantly researched with increasing enthusiasm. Although a few review studies have been carried out, there is non-existence of a quantitative review study that can deliver a holistic picture of CPM.Design/methodology/approachThe science mapping-based scientometric analysis was systematically processed with 1,835 CPM-related journal articles retrieved from Scopus. The co-authorship analysis and direct citation analysis were carried out to identify the most influential researchers, countries and publishers of the knowledge domain. The co-occurrence analysis of keyword was assessed to reveal the most dominating research topics and research trend with the visual representation of the considered research domain.FindingsThis study reveals seven clusters of main research topics from the keyword co-occurrence analysis. The evolution of research confirms that CPM-related research studies were mainly focused on fundamental and traditional CPM research topics before 2007. The period between 2007 and 2020 has seen a shift of research efforts towards digitalization and automation. The result suggests Building Information Modelling (BIM) as the most common, growing and influential research topic in the CPM research domain. It has been used in combination with different data acquisition technologies (e.g. photogrammetry, videogrammetry, laser scanning, Internet of Things (IoT) sensors) and data analytics approaches (e.g. machine learning and computer vision).Practical implicationsThis study provides the horizon of potential research in the research domain of CPM to researchers, policymakers and practitioners by availing of main research themes, current knowledge gaps and future research directions.Originality/valueThis paper represents the first scientometric study depicting the state-of-the-art of the research by assessing the current knowledge domain of CPM.


Sign in / Sign up

Export Citation Format

Share Document