scholarly journals Review of Image-Based 3D Reconstruction of Building for Automated Construction Progress Monitoring

2021 ◽  
Vol 11 (17) ◽  
pp. 7840
Author(s):  
Jingguo Xue ◽  
Xueliang Hou ◽  
Ying Zeng

With the spread of camera-equipped devices, massive images and videos are recorded on construction sites daily, and the ever-increasing volume of digital images has inspired scholars to visually capture the actual status of construction sites from them. Three-dimensional (3D) reconstruction is the key to connecting the Building Information Model and the project schedule to daily construction images, which enables managers to compare as-planned with as-built status and detect deviations and therefore monitor project progress. Many scholars have carried out extensive research and produced a variety of intricate methods. However, few studies comprehensively summarize the existing technologies and introduce the homogeneity and differences of these technologies. Researchers cannot clearly identify the relationship between various methods to solve the difficulties. Therefore, this paper focuses on the general technical path of various methods and sorts out a comprehensive research map, to provide reference for researchers in the selection of research methods and paths. This is followed by identifying gaps in knowledge and highlighting future research directions. Finally, key findings are summarized.

Author(s):  
S. Tuttas ◽  
A. Braun ◽  
A. Borrmann ◽  
U. Stilla

For construction progress monitoring a planned state of the construction at a certain time (as-planed) has to be compared to the actual state (as-built). The as-planed state is derived from a building information model (BIM), which contains the geometry of the building and the construction schedule. In this paper we introduce an approach for the generation of an as-built point cloud by photogrammetry. It is regarded that that images on a construction cannot be taken from everywhere it seems to be necessary. Because of this we use a combination of structure from motion process together with control points to create a scaled point cloud in a consistent coordinate system. Subsequently this point cloud is used for an as-built – as-planed comparison. For that voxels of an octree are marked as occupied, free or unknown by raycasting based on the triangulated points and the camera positions. This allows to identify not existing building parts. For the verification of the existence of building parts a second test based on the points in front and behind the as-planed model planes is performed. The proposed procedure is tested based on an inner city construction site under real conditions.


Author(s):  
S. Tuttas ◽  
A. Braun ◽  
A. Borrmann ◽  
U. Stilla

Construction progress monitoring is a primarily manual and time consuming process which is usually based on 2D plans and therefore has a need for an increased automation. In this paper an approach is introduced for comparing a planned state of a building (as-planned) derived from a Building Information Model (BIM) to a photogrammetric point cloud (as-built). In order to accomplish the comparison a triangle-based representation of the building model is used. The approach has two main processing steps. First, visibility checks are performed to determine whether or not elements of the building are potentially built. The remaining parts can be either categorized as free areas, which are definitely not built, or as unknown areas, which are not visible. In the second step it is determined if the potentially built parts can be confirmed by the surrounding points. This process begins by splitting each triangle into small raster cells. For each raster cell a measure is calculated using three criteria: the mean distance of the points, their standard deviation and the deviation from a local plane fit. A triangle is confirmed if a sufficient number of raster cells yield a high rating by the measure. The approach is tested based on a real case inner city scenario. Only triangles showing unambiguous results are labeled with their statuses, because it is intended to use these results to infer additional statements based on dependencies modeled in the BIM. It is shown that the label built is reliable and can be used for further analysis. As a drawback this comes with a high percentage of ambiguously classified elements, for which the acquired data is not sufficient (in terms of coverage and/or accuracy) for validation.


2021 ◽  
Vol 11 (15) ◽  
pp. 7016
Author(s):  
Pawel S. Dabrowski ◽  
Cezary Specht ◽  
Mariusz Specht ◽  
Artur Makar

The theory of cartographic projections is a tool which can present the convex surface of the Earth on the plane. Of the many types of maps, thematic maps perform an important function due to the wide possibilities of adapting their content to current needs. The limitation of classic maps is their two-dimensional nature. In the era of rapidly growing methods of mass acquisition of spatial data, the use of flat images is often not enough to reveal the level of complexity of certain objects. In this case, it is necessary to use visualization in three-dimensional space. The motivation to conduct the study was the use of cartographic projections methods, spatial transformations, and the possibilities offered by thematic maps to create thematic three-dimensional map imaging (T3DMI). The authors presented a practical verification of the adopted methodology to create a T3DMI visualization of the marina of the National Sailing Centre of the Gdańsk University of Physical Education and Sport (Poland). The profiled characteristics of the object were used to emphasize the key elements of its function. The results confirmed the increase in the interpretative capabilities of the T3DMI method, relative to classic two-dimensional maps. Additionally, the study suggested future research directions of the presented solution.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Roula Zougheibe ◽  
Jianhong (Cecilia) Xia ◽  
Ashraf Dewan ◽  
Ori Gudes ◽  
Richard Norman

Abstract Background Numerous studies have examined the association between safety and primary school-aged children’s forms of active mobility. However, variations in studies’ measurement methods and the elements addressed have contributed to inconsistencies in research outcomes, which may be forming a barrier to advancing researchers’ knowledge about this field. To assess where current research stands, we have synthesised the methodological measures in studies that examined the effects of neighbourhood safety exposure (perceived and measured) on children’s outdoor active mobility behaviour and used this analysis to propose future research directions. Method A systematic search of the literature in six electronic databases was conducted using pre-defined eligibility criteria and was concluded in July 2020. Two reviewers screened the literature abstracts to determine the studies’ inclusion, and two reviewers independently conducted a methodological quality assessment to rate the included studies. Results Twenty-five peer-reviewed studies met the inclusion criteria. Active mobility behaviour and health characteristics were measured objectively in 12 out of the 25 studies and were reported in another 13 studies. Twenty-one studies overlooked spatiotemporal dimensions in their analyses and outputs. Delineations of children’s neighbourhoods varied within 10 studies’ objective measures, and the 15 studies that opted for subjective measures. Safety perceptions obtained in 22 studies were mostly static and primarily collected via parents, and dissimilarities in actual safety measurement methods were present in 6 studies. The identified schematic constraints in studies’ measurement methods assisted in outlining a three-dimensional relationship between ‘what’ (determinants), ‘where’ (spatial) and ‘when’ (time) within a methodological conceptual framework. Conclusions The absence of standardised measurement methods among relevant studies may have led to the current diversity in findings regarding active mobility, spatial (locality) and temporal (time) characteristics, the neighbourhood, and the representation of safety. Ignorance of the existing gaps and heterogeneity in measures may impact the reliability of evidence and poses a limitation when synthesising findings, which could result in serious biases for policymakers. Given the increasing interest in children’s health studies, we suggested alternatives in the design and method of measures that may guide future evidence-based research for policymakers who aim to improve children’s active mobility and safety.


Author(s):  
Nataša Šuman ◽  
Zoran Pučko

The construction industry is facing the increasing process of integration of Industry 4.0 in all phases of the construction project lifecycle. Its exponential growth has been detected in research efforts focused on the usage of the building information modeling (BIM) as one of the most breakthrough innovative approaches in the construction (AEC) industry. BIM brings many advantages as well as changes in the existing construction practice, which allows for adjustment of processes in the most automated possible way. The goal in the design phase is to create a comprehensive BIM model that combines the data of all project participants and represents a digital model of a future building. In the construction phase, the monitoring and controlling the work progress is one of the most important and difficult tasks, and it is today still mostly done manually. Currently, more research and actual implementations are oriented towards the introduction of the automated construction progress monitoring (ACPMon). All of this is the basis for advanced construction project management (ACPMan).


2019 ◽  
pp. 153450841988394
Author(s):  
Amanda M. VanDerHeyden ◽  
Carmen Broussard

This study details the construction of parameters for generating subskill mastery math measures to be used for screening, intervention planning, progress monitoring, and proximal program evaluation. Parameters for generating assessment measures were built and tested to verify initial equivalence of generated measures using potential digits correct as a proxy for task difficulty across generated measures. Generated measures met initial equivalence criteria and were subjected to further reliability analysis. Measures were generated and administered 1 week apart at fall and winter to students in Grades K, 1, 3, 5, and 7. Thirty-four screening measures were examined for delayed alternate form reliability, risk decision agreement, and interobserver agreement. Delayed alternate form reliability values generally exceeded r = .80, could be reliably scored, and yielded consistent risk decisions. Future research directions were discussed.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 586 ◽  
Author(s):  
Ziwen Liu ◽  
Qian Wang ◽  
Vincent J.L. Gan ◽  
Luke Peh

Building Information Modeling (BIM) and sustainable buildings are two future cornerstones of the Architectural, Engineering and Construction (AEC) industry. In Singapore’s context, the Green Mark (GM) scoring system is prevalently used to assess the sustainability index of green buildings. BIM provides the semantic and geometry information of buildings, which is proliferated as the technological and process backbone for the green building assessment. This research, through vast literature reviews, identified that the current procedure of achieving a Green Mark score is tedious and cumbersome, which hampers productivity, especially in the calculation of building envelope thermal performance. Furthermore, the project stakeholders work in silos, in a non-collaborative, manual and 2D-based environment for generating relevant documentation to achieve the requisite green mark score. To this end, a cloud-based BIM platform was developed, with the aim of encouraging project stakeholders to collaboratively generate the project’s green mark score digitally in accordance with the regulatory requirements. Through this research, the authors have validated the Envelope Thermal Transfer Value (ETTV) calculation, which is one of the prerequisite criteria to achieve a Green Mark score, through a case study using the developed cloud-based BIM platform. The results indicated that using the proposed platform enhances the productivity and accuracy as far as ETTV calculation is concerned. This study provides a basis for future research in implementing the proposed platform for other criteria under the Green Mark Scheme.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1705
Author(s):  
Aziz Alotaibi

Many image processing, computer graphics, and computer vision problems can be treated as image-to-image translation tasks. Such translation entails learning to map one visual representation of a given input to another representation. Image-to-image translation with generative adversarial networks (GANs) has been intensively studied and applied to various tasks, such as multimodal image-to-image translation, super-resolution translation, object transfiguration-related translation, etc. However, image-to-image translation techniques suffer from some problems, such as mode collapse, instability, and a lack of diversity. This article provides a comprehensive overview of image-to-image translation based on GAN algorithms and its variants. It also discusses and analyzes current state-of-the-art image-to-image translation techniques that are based on multimodal and multidomain representations. Finally, open issues and future research directions utilizing reinforcement learning and three-dimensional (3D) modal translation are summarized and discussed.


Sign in / Sign up

Export Citation Format

Share Document