trophic diversification
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 3)

2020 ◽  
Vol 129 (4) ◽  
pp. 844-861 ◽  
Author(s):  
Jessica H Arbour ◽  
Carmen G Montaña ◽  
Kirk O Winemiller ◽  
Allison A Pease ◽  
Miriam Soria-Barreto ◽  
...  

Abstract During adaptive radiation, diversification within clades is limited by adaptation to the available ecological niches, and this may drive patterns of both trait and species diversity. However, adaptation to disparate niches may result in varied impacts on the timing, pattern and rate of morphological evolution. In this study, we examined the relationship between feeding ecology and functional diversification across a diverse clade of freshwater fishes, the Neotropical cichlids. Species dietary niches were ordinated via multivariate analysis of stomach content data. We investigated changes in the rate and pattern of morphological diversification associated with feeding, including dietary niche and degree of dietary specialization. A major division in dietary niche space was observed between predators that consume fish and macroinvertebrates vs. other groups with diets dominated by small invertebrates, detritus or vegetation. These trophic niches were strongly associated with groupings defined by functional morphospace. Clades within the piscivore/macroinvertivore group rarely transitioned to other dietary niches. Comparatively, high dietary specialization enhanced functional diversification, driving the evolution of more extreme morphologies. Divergent patterns of trophic diversification among Neotropical cichlids appear to derive from different performance demands in regional abiotic and biotic environments associated with biogeographical history.


2019 ◽  
Vol 33 (6) ◽  
pp. 855-872 ◽  
Author(s):  
Rafaela V. Missagia ◽  
Bruce D. Patterson ◽  
Fernando A. Perini

2019 ◽  
Vol 286 (1897) ◽  
pp. 20182358 ◽  
Author(s):  
C. Darrin Hulsey ◽  
Michael E. Alfaro ◽  
Jimmy Zheng ◽  
Axel Meyer ◽  
Roi Holzman

Complexity in how mechanistic variation translates into ecological novelty could be critical to organismal diversification. For instance, when multiple distinct morphologies can generate the same mechanical or functional phenotype, this could mitigate trade-offs and/or provide alternative ways to meet the same ecological challenge. To investigate how this type of complexity shapes diversity in a classic adaptive radiation, we tested several evolutionary consequences of the anterior jaw four-bar linkage for Lake Malawi cichlid trophic diversification. Using a novel phylogenetic framework, we demonstrated that different mechanical outputs of the same four jaw elements are evolutionarily associated with both jaw protrusion distance and jaw protrusion angle. However, these two functional aspects of jaw protrusion have evolved independently. Additionally, although four-bar morphology showed little evidence for attraction to optima, there was substantial evidence of adaptive peaks for emergent four-bar linkage mechanics and jaw protrusion abilities among Malawi feeding guilds. Finally, we highlighted a clear case of two cichlid species that have ­independently evolved to graze algae in less than 2 Myr and have converged on similar jaw protrusion abilities as well as four-bar linkage mechanics, but have evolved these similarities via non-convergent four-bar morphologies.


Author(s):  
Matt FRIEDMAN ◽  
Stephanie E. PIERCE ◽  
Michael COATES ◽  
Sam GILES

ABSTRACTThe Permo-Carboniferous eurynotiforms show conspicuous modifications to postcranial and cranial morphology relative to primitive actinopterygian conditions, and represent an important early example of functional experimentation within ray-finned fishes. Although eurynotiforms are represented by abundant articulated fossil material, the internal anatomy of the group is not well known. Microcomputed tomography (μCT) of Eurynotus crenatus from the early Carboniferous (Viséan) Wardie Shales Member of the Gullane Formation of Wardie, Scotland provides detailed information on the jaws, palate and dentition. The lower jaw is deep and bears a well-developed convex dental plate on the prearticular/coronoids. The dentary bears a dorsally directed posterior process and lacks any obvious marginal dentition. The prearticular bears a low coronoid process. Apart from the first and second dermopalatines, and a likely accessory vomer, bones of the palate are tightly sutured or fused. The upper dental plate comprises a longitudinal, concave horizontal dental surface that occludes with the convex lower toothplate, and a more vertical region consisting of anastomosing ridges. The parasphenoid has a narrow anterior corpus and a broad posterior stalk that bears a pronounced midline notch. The smooth, irregularly punctated surfaces of the dental plates are formed by closely packed teeth with conjoined crowns, providing clues to the evolution of the more monolithic toothplates of Amphicentrum from the peg-like teeth reported in the earliest and most anatomically generalised eurynotiforms. The feeding apparatus shows many qualitative and quantitative features consistent with the processing of hard prey items. Eurynotus and its relatives show the first clear example of jaw and dental structures consistent with durophagy among actinopterygians. The origin of the group in the early Carboniferous is suggestive of diversification into newly available ecological roles in the aftermath of the end-Devonian extinction.


Author(s):  
Andrea Glassmire ◽  
Joshua Jahner ◽  
Kevin Badik ◽  
Matthew Forister ◽  
Angela Smilanich ◽  
...  

2016 ◽  
Author(s):  
Christopher H. Martin

AbstractEcological opportunity is frequently proposed as the sole ingredient for adaptive radiation into novel niches. Alternatively, genome-wide hybridization resulting from ‘hybrid swarm’ may be the trigger. However, these hypotheses have been difficult to test due to the rarity of comparable control environments lacking adaptive radiations. Here I exploit such a pattern in microendemic radiations of Caribbean pupfishes. I show that a sympatric three-species radiation on San Salvador Island, Bahamas diversified 1,445 times faster than neighboring islands in jaw length due to evolution of a novel scale-eating adaptive zone from a generalist ancestral niche. I then sampled 22 generalist populations on seven neighboring islands and measured morphological diversity, stomach content diversity, dietary isotopic diversity, genetic diversity, lake/island areas, macroalgae richness, and Caribbean-wide patterns of gene flow. None of these standard metrics of ecological opportunity or gene flow were associated with adaptive radiation, except for slight increases in macroalgae richness. Thus, exceptional trophic diversification is highly localized despite myriad generalist populations in comparable environmental and genetic backgrounds. This study provides a strong counterexample to the ecological/hybrid-swarm theories of adaptive radiation and suggests that diversification of novel specialists on a sparse fitness landscape is constrained by more than ecological opportunity and gene flow.


Sign in / Sign up

Export Citation Format

Share Document