devonian extinction
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sam Giles ◽  
Kara Feilich ◽  
Stephanie Pierce ◽  
Matt Friedman

AbstractActinopterygian (ray-finned) fishes represent the principal vertebrate group in aquatic settings. This dominance is often attributed to their apparent success in the aftermath of the end-Devonian extinction. Increases in taxonomic and morphological diversity in the early Carboniferous, coupled with phylogenetic hypotheses implying the survival of few Devonian lineages, contribute to a model of explosive post-extinction radiation. However, most actinopterygian fossils from within a ca. 20 Myr window surrounding the end-Devonian extinction remain poorly known, contributing to uncertainty about these patterns. Here we present detailed anatomical data for an exceptionally preserved but diminutive ray-finned fish from within this gap, ~7 Myr prior to the Devonian-Carboniferous boundary. Representing a new genus and species, it bears a series of derived anatomical features otherwise known only from Carboniferous and younger taxa. It nests phylogenetically within a clade of post-Devonian species and, in an expanded phylogenetic analysis incorporating other previously neglected taxa, draws at least ten lineages of Carboniferous actinopterygians into the Late Devonian. This suggests phenotypically cryptic divergence among ray-finned fishes in the latest Devonian, followed by more conspicuous diversification in feeding and locomotor structures in the Carboniferous. This revised model finds parallels in patterns emerging for other clades, and provides a refined perspective on key events early in the history of a group that today contains half of all living vertebrate species.


2021 ◽  
Vol 117 (3/4) ◽  
Author(s):  
Christopher Harris ◽  
Robert W. Gess ◽  
Cameron Penn-Clarke ◽  
Bruce S. Rubidge

Coombs Hill, a new fossil locality in the Witpoort Formation (Witteberg Group) of South Africa, preserves a record of Famennian (Late Devonian) life in Gondwana. Fossil plants collected at Coombs Hill are preliminarily assigned to several classes. Shelly invertebrates include a variety of bivalve mollusc forms, some of which appear to be preserved in life position. Biodiversity at Coombs Hill is comparable to that of the well-known Waterloo Farm lagerstätte in ordinal diversity, but exhibits differences in species composition. Ongoing taxonomic analysis will provide a rare window into the ecology of high-latitude environments during this pivotal stage of Earth history, which immediately preceded the end-Devonian extinction. Sandstone dominated sedimentary facies at Coombs Hill suggest a high-energy coastal marine setting, with brackish back-barrier estuarine/lagoonally derived fossiliferous mudstones. Exact stratigraphic placement within the Witpoort Formation is hampered by structural deformation, and precise age comparisons with Waterloo Farm are currently tenuous.


2020 ◽  
Vol 117 (35) ◽  
pp. 21008-21010
Author(s):  
Brian D. Fields ◽  
Adrian L. Melott ◽  
John Ellis ◽  
Adrienne F. Ertel ◽  
Brian J. Fry ◽  
...  

The Late Devonian was a protracted period of low speciation resulting in biodiversity decline, culminating in extinction events near the Devonian–Carboniferous boundary. Recent evidence indicates that the final extinction event may have coincided with a dramatic drop in stratospheric ozone, possibly due to a global temperature rise. Here we study an alternative possible cause for the postulated ozone drop: a nearby supernova explosion that could inflict damage by accelerating cosmic rays that can deliver ionizing radiation for up to∼100ky. We therefore propose that the end-Devonian extinctions were triggered by supernova explosions at∼20 pc, somewhat beyond the “kill distance” that would have precipitated a full mass extinction. Such nearby supernovae are likely due to core collapses of massive stars; these are concentrated in the thin Galactic disk where the Sun resides. Detecting either of the long-lived radioisotopesSm146orPu244in one or more end-Devonian extinction strata would confirm a supernova origin, point to the core-collapse explosion of a massive star, and probe supernova nucleosynthesis. Other possible tests of the supernova hypothesis are discussed.


2020 ◽  
Author(s):  
Marine Maillet ◽  
Elias Samankassou

<p>Metazoan reef builders receded globally during the Carboniferous, after the Late Devonian extinction event, with only few exceptions of coral-bearing bioconstructions reported worldwide. Among the latter, two exceptional extended coral reefs, dated as Late Viséan–Serpukhovian and Kasimovian-Gzhelian in age, respectively, were recently reported from southern China. The scarcity of coral buildups worldwide suggests global unfavorable conditions, with specific settings considered to represent refugia. To constrain these environmental conditions, seawater composition is reconstructed using carbon and oxygen isotopes originating from five measured sections located in southern China.</p><p>The resulting δ<sup>13</sup>C data reveals several environmental changes throughout the Carboniferous attributed to climate changes, ocean current variations, and proliferation of terrestrial plants. During the Late Viséan-earliest Serpukhovian, the high δ<sup>13</sup>C values (<sub>˜</sub>3‰) are interpreted as recording short-lived glacial events, with the expansion of ice-sheets in South America and eastern Australia. The scarcity of coral reef growth suggests that the cooling acted as an inhibiting factor during this period. Conversely, the development of the exceptional coral reefs in southern China could be explained by the persistence of warm oceanic currents in the epicontinental sea, located in equatorial position. During the Kasimovian-Gzhelian, the gradual δ<sup>13</sup>C positive shift from -0.7 to +4.7‰ coincides with a short-lived warming, which should be suitable for the recovery of coral communities. However, in spite of the mild climate, the scarcity of Pennsylvanian coral reef leads to consider other inhibiting factors (e.g. biological competition and aragonite seas). Interestingly, the disappearance of coral reefs in southern China correlates with negative δ<sup>13</sup>C shifts (e.g. Mid-Viséan, Late Gzhelian), interpreted as related to intensified upwellings.</p><p>The reconstitution of the Carboniferous environmental conditions documents several factors contributing to the metazoan reef demise and recovery subsequent to the Late Devonian extinction events, and adds to our current knowledge of the longest reef recovery in the Phanerozoic.</p><p> </p><p> </p>


2020 ◽  
Author(s):  
Sarah K. Brisson ◽  
◽  
Jaleigh Q. Pier ◽  
Anjali Fernandes ◽  
James P. Kerr ◽  
...  

2019 ◽  
Vol 5 (9) ◽  
pp. eaax2742 ◽  
Author(s):  
Michael I. Coates ◽  
Kristen Tietjen ◽  
Aaron M. Olsen ◽  
John A. Finarelli

High-performance suction feeding is often presented as a classic innovation of ray-finned fishes, likely contributing to their remarkable evolutionary success, whereas sharks, with seemingly less sophisticated jaws, are generally portrayed as morphologically conservative throughout their history. Here, using a combination of computational modeling, physical modeling, and quantitative three-dimensional motion simulation, we analyze the cranial skeleton of one of the earliest known stem elasmobranchs, Tristychius arcuatus from the Middle Mississippian of Scotland. The feeding apparatus is revealed as highly derived, capable of substantial oral expansion, and with clear potential for high-performance suction feeding some 50 million years before the earliest osteichthyan equivalent. This exceptional jaw performance is not apparent from standard measures of ecomorphospace using two-dimensional data. Tristychius signals the emergence of entirely new chondrichthyan ecomorphologies in the aftermath of the end-Devonian extinction and highlights sharks as significant innovators in the early radiation of the modern vertebrate biota.


2019 ◽  
Vol 17 (21) ◽  
pp. 1825-1846 ◽  
Author(s):  
Tom J. Challands ◽  
Timothy R. Smithson ◽  
Jennifer A. Clack ◽  
Carys E. Bennett ◽  
John E. A. Marshall ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e5972 ◽  
Author(s):  
Jennifer A. Clack ◽  
Carys E. Bennett ◽  
Sarah J. Davies ◽  
Andrew C. Scott ◽  
Janet E. Sherwin ◽  
...  

A conglomerate bed from the Tournaisian Ballagan Formation of Scotland preserves a rich array of vertebrate and other nonmarine fossils providing an insight into the wider ecosystem and paleoenvironment that existed during this pivotal stage of Earth history. It challenges hypotheses of a long-lasting post-extinction trough following the end-Devonian extinction event. The fauna recovered includes a wide size range of tetrapods, rhizodonts, and dipnoans, from tiny juveniles or small-bodied taxa up to large adults, and more than one taxon of each group is likely. Some fauna, such as actinopterygians and chondrichthyans, are rare as macrofauna but are better represented in the microfossil assemblage. The fauna provides evidence of the largest Carboniferous lungfish ever found. The specimens are preserved in a localized, poorly-sorted conglomerate which was deposited in the deepest part of a river channel, the youngest of a group of channels. In addition to the fossils (micro- and macro-), the conglomerate includes locally-derived clasts of paleosols and other distinctive elements of the surrounding floodplains. Charcoal fragments represent small woody axes and possible larger trunk tissue from arborescent pteridosperms. Preservation of the fossils indicates some aerial exposure prior to transport, with abrasion from rolling. The findings presented here contrast with other published trends in vertebrate size that are used to interpret a reduction in maximum sizes during the Tournaisian. The richness of the fauna runs counter to the assumption of a depauperate nonmarine fauna following the end-Devonian Hangenberg event, and charcoal content highlights the occurrence of fire, with the requisite levels of atmospheric oxygen during that stage.


Sign in / Sign up

Export Citation Format

Share Document