scholarly journals Positivity bounds on Minimal Flavor Violation

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Quentin Bonnefoy ◽  
Emanuele Gendy ◽  
Christophe Grojean

Abstract From general analyticity and unitarity requirements on the UV theory, positivity bounds on the Wilson coefficients of the dimension-8 operators composed of 4 fermions and two derivatives appearing in the Standard Model Effective Field Theory have been derived recently. We explore the fate of these bounds in the context of models endowed with a Minimal Flavor Violation (MFV) structure, models in which the flavor structure of higher dimensional operators is inherited from the one already contained in the Yukawa sector of the Standard Model Lagrangian. Our goal is to check whether the general positivity bounds translate onto bounds on the Yukawa coefficients and/or on elements of the CKM matrix. MFV fixes the coefficients of dimension-8 operators up to some multiplicative flavor-blind factors and we find that, in the most generic setup, the freedom left by those unspecified coefficients is enough as not to constrain the parameters of the renormalizable Yukawa sector. On the contrary, the latter shape the allowed region for the former. Requiring said overall coefficients to take natural $$ \mathcal{O}(1) $$ O 1 values could give rise to bounds on the Yukawa couplings. Remarkably, at leading order in an expansion in powers of the Yukawa matrices, no bounds on the CKM entries can be retrieved.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Sebastian Bruggisser ◽  
Ruth Schäfer ◽  
Danny van Dyk ◽  
Susanne Westhoff

Abstract New physics not far above the TeV scale should leave a pattern of virtual effects in observables at lower energies. What do these effects tell us about the flavor structure of a UV theory? Within the framework of the Standard Model Effective Field Theory (SMEFT), we resolve the flavor structure of the Wilson coefficients in a combined analysis of top-quark and B-physics observables. We assume that the Yukawa couplings are the only sources of flavor symmetry breaking, a framework known as Minimal Flavor Violation. Our fits to LHC and b-factory measurements show that combining top and bottom observables is crucial to pin down possible sources of flavor breaking in a UV theory. This analysis includes the full analytic expansion of SMEFT coefficients in Minimal Flavor Violation and a detailed study of SMEFT effects in b → s flavor transitions.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Tatsuo Kobayashi ◽  
Hajime Otsuka

AbstractWe study the minimal flavor violation in the context of string effective field theory. Stringy selection rules indicate that n-point couplings among fermionic zero-modes and lightest scalar modes in the string effective action are given by a product of Yukawa couplings which are regarded as spurion fields of stringy and geometrical symmetries. Hence, Yukawa couplings determine the dynamics of flavor and CP violations. This observation strongly supports the hypothesis of minimal flavor violation in the Standard Model effective field theory.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Tyler Corbett

Making use of the geometric formulation of the Standard Model Effective Field Theory we calculate the one-loop tadpole diagrams to all orders in the Standard Model Effective Field Theory power counting. This work represents the first calculation of a one-loop amplitude beyond leading order in the Standard Model Effective Field Theory, and discusses the potential to extend this methodology to perform similar calculations of observables in the near future.


2001 ◽  
Vol 16 (28) ◽  
pp. 4547-4565 ◽  
Author(s):  
YUE-LIANG WU ◽  
YU-FENG ZHOU

The measurement of sin 2β is discussed within and beyond the standard model. In the presence of new physics, the angle β extracted from the global fit (denoted by [Formula: see text]) and the one extracted from B→J/ψKS(denoted by βJ/ψ) are in general all different from the "true" angle β which is the weak phase of CKM matrix element [Formula: see text]. Possible new physics effects on the ratio [Formula: see text] is studied and parametrized in a most general form. It is shown that the ratio Rβmay provide a useful tool in probing new physics. The experimental value of Rβis obtained through an update of the global fit of the unitarity triangle with the latest data and found to be less than unity at 1σ level. The new physics effects on Rβfrom the models with minimum flavor violation (MFV) and the standard model with two-Higgs-doublet (S2HDM) are studied in detail. It is found that the MFV models seem to give a relative large value Rβ≥1. With the current data, this may indicate that this kind of new physics may be disfavored and alternative new physics with additional phases appears more relevant. As an illustration for models with additional phase beyond CKM phase, the S2HDM effects on Rβare studied and found to be easily coincide with the data due to the flavor changing neutral Higgs interaction.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jason Aebischer ◽  
Christoph Bobeth ◽  
Andrzej J. Buras ◽  
Jacky Kumar ◽  
Mikołaj Misiak

Abstract We reconsider the complete set of four-quark operators in the Weak Effective Theory (WET) for non-leptonic ∆F = 1 decays that govern s → d and b → d, s transitions in the Standard Model (SM) and beyond, at the Next-to-Leading Order (NLO) in QCD. We discuss cases with different numbers Nf of active flavours, intermediate threshold corrections, as well as the issue of transformations between operator bases beyond leading order to facilitate the matching to high-energy completions or the Standard Model Effective Field Theory (SMEFT) at the electroweak scale. As a first step towards a SMEFT NLO analysis of K → ππ and non-leptonic B-meson decays, we calculate the relevant WET Wilson coefficients including two-loop contributions to their renormalization group running, and express them in terms of the Wilson coefficients in a particular operator basis for which the one-loop matching to SMEFT is already known.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 461
Author(s):  
António P. Morais ◽  
Roman Pasechnik ◽  
Werner Porod

The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distinctive properties of the SM dynamically emerge from a unified New Physics framework tying together both flavor physics and Grand Unified Theory (GUT) concepts. This framework is suggested by a novel anomaly-free supersymmetric chiral E6×SU(2)F×U(1)F GUT containing the SM. Among the most appealing emergent properties of this theory is the Higgs-matter unification with a highly-constrained massless chiral sector featuring two universal Yukawa couplings close to the GUT scale. At the electroweak scale, the minimal SM-like effective field theory limit of this GUT represents a specific flavored three-Higgs doublet model consistent with the observed large hierarchies in the quark mass spectra and mixing already at tree level.


1993 ◽  
Vol 08 (07) ◽  
pp. 573-582 ◽  
Author(s):  
HENNING SCHRÖDER

Using the ARGUS detector at the e+e− storage ring DORIS II at DESY new results on beauty and τ physics have been obtained. In particular, new measurements on fundamental constants in the Yukawa sector of the Standard Model are presented. These comprise measurements of CKM matrix elements from the study of B decays as well as determinations of properties of the τ lepton and its neutrino vτ. From semileptonic B decays ARGUS finds |Vcb|=0.050±0.008±0.007 and from [Formula: see text] mixing |Vtd|= 0.007±0.002. An analysis of the decay type τ−→π−π−π+ντ yields a τ mass of mτ=(1776.3±2.4±1.4) MeV/c2. This result also leads to an improvement of the upper limit on the [Formula: see text] at the 95% confidence level.


2006 ◽  
Vol 21 (14) ◽  
pp. 1151-1160 ◽  
Author(s):  
C. R. DAS ◽  
C. D. FROGGATT ◽  
L. V. LAPERASHVILI ◽  
H. B. NIELSEN

We investigate the requirement of the existence of two degenerate vacua of the effective potential as a function of the Weinberg–Salam Higgs scalar field norm, as suggested by the multiple point principle, in an extension of the Standard Model including seesaw scale physics. Results are presented from an investigation of an extension of the Standard Model to the gauge symmetry group SU (3)C× SU (2)L× U (1)′×Ũ(1), where U (1)′ and Ũ(1) originate at the seesaw scale M SS , when heavy (right-handed) neutrinos appear. The consequent unification of the group SU (3)C× SU (2)L× U (1)′ into the flipped SU (5) at the GUT scale leads to the group SU (5)×Ũ(1). We assume the position of the second minimum of the effective potential coincides with the fundamental scale, here taken to be the GUT scale. We solve the renormalization group equations in the one-loop approximation and obtain a top-quark mass of 171±3 GeV and a Higgs mass of 129±4 GeV , in the case when the Yukawa couplings of the neutrinos are less than half that of the top quark at the GUT scale.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Quentin Bonnefoy ◽  
Luca Di Luzio ◽  
Christophe Grojean ◽  
Ayan Paul ◽  
Alejo N. Rossia

Abstract We study whether higher-dimensional operators in effective field theories, in particular in the Standard Model Effective Field Theory (SMEFT), can source gauge anomalies via the modification of the interactions involved in triangle diagrams. We find no evidence of such gauge anomalies at the level of dimension-6 operators that can therefore be chosen independently to each others without spoiling the consistency of SMEFT, at variance with recent claims. The underlying reason is that gauge-invariant combinations of Goldstone bosons and massive gauge fields are allowed to couple to matter currents which are not conserved. We show this in a toy model by computing the relevant triangle diagrams, as well as by working out Wess-Zumino terms in the bosonic EFT below all fermion masses. The same approach applies directly to the Standard Model both at the renormalisable level, providing a convenient and unusual way to check that the SM is anomaly free, as well as at the non-renormalisable level in SMEFT.


2019 ◽  
Vol 17 (1, spec.issue) ◽  
pp. 89-96
Author(s):  
Lampros Trifyllis

Starting from the Standard Model (SM) of elementary particle physics, we assume that new physics effects can be encoded in higher-dimensional operators added in the SM Lagrangian. The resulting theory, the SM Effective Field Theory (SMEFT), is then used for high-accuracy phenomenological studies. Through this paper, the di-photon decay of the Higgs boson is used as a sample of a concrete calculation in the SMEFT framework.


Sign in / Sign up

Export Citation Format

Share Document