scholarly journals Local rewiring of genome - nuclear lamina interactions by transcription

2019 ◽  
Author(s):  
Laura Brueckner ◽  
Peiyao A Zhao ◽  
Tom van Schaik ◽  
Christ Leemans ◽  
Jiao Sima ◽  
...  

AbstractTranscriptionally inactive genes are often positioned at the nuclear lamina (NL), as part of large lamina-associated domains (LADs). Activation of such genes is often accompanied by repositioning towards the nuclear interior. How this process works and how it impacts flanking chromosomal regions is poorly understood. We addressed these questions by systematic manipulation of gene activity and detailed analysis of NL interactions. Activation of genes inside LADs typically causes detachment of the entire transcription unit but rarely more than 50-100 kb of flanking DNA, even when multiple neighboring genes are activated. The degree of detachment depends on the expression level and the length of the activated gene. Loss of NL interactions coincides with a switch from late to early replication timing, but the latter can involve longer stretches of DNA. These findings show how NL interactions can be shaped locally by transcription and point to a remarkable flexibility of interphase chromosomes.


2011 ◽  
Vol 39 (6) ◽  
pp. 1705-1709 ◽  
Author(s):  
Erin M. Bank ◽  
Yosef Gruenbaum

In metazoan cells, the heterochromatin is generally localized at the nuclear periphery, whereas active genes are preferentially found in the nuclear interior. In the present paper, we review current evidence showing that components of the nuclear lamina interact directly with heterochromatin, which implicates the nuclear lamina in a mechanism of specific gene retention at the nuclear periphery and release to the nuclear interior upon gene activation. We also discuss recent data showing that mutations in lamin proteins affect gene positioning and expression, providing a potential mechanism for how these mutations lead to tissue-specific diseases.



Author(s):  
Kyle N. Klein ◽  
Peiyao A. Zhao ◽  
Xiaowen Lyu ◽  
Daniel A. Bartlett ◽  
Amar Singh ◽  
...  

AbstractDNA is replicated in a defined temporal order termed the replication timing (RT) program. RT is spatially segregated in the nucleus with early/late replication corresponding to Hi-C A/B chromatin compartments, respectively. Early replication is also associated with active histone modifications and transcriptional permissiveness. However, the mechanistic interplay between RT, chromatin state, and genome compartmentalization is largely unknown. Here we report that RT is central to epigenome maintenance and compartmentalization in both human embryonic stem cells (hESCs) and cancer cell line HCT116. Knockout (KO) of the conserved RT control factor RIF1, rather than causing discrete RT switches as previously suspected, lead to dramatically increased cell to cell heterogeneity of RT genome wide, despite RIF1’s enrichment in late replicating chromatin. RIF1 KO hESCs have a nearly random RT program, unlike all prior RIF1 KO cells, including HCT116, which show localized alterations. Regions that retain RT, which are prevalent in HCT116 but rare in hESCs, consist of large H3K9me3 domains revealing two independent mechanisms of RT regulation that are used to different extents in different cell types. RIF1 KO results in a striking genome wide downregulation of H3K27ac peaks and enrichment of H3K9me3 at large domains that remain late replicating, while H3K27me3 and H3K4me3 are re-distributed genome wide in a cell type specific manner. These histone modification changes coincided with global reorganization of genome compartments, transcription changes and a genome wide strengthening of TAD structures. Inducible degradation of RIF1 revealed that disruption of RT is upstream of genome compartmentalization changes. Our findings demonstrate that disruption of RT leads to widespread epigenetic mis-regulation, supporting previously speculative models in which the timing of chromatin assembly at the replication fork plays a key role in maintaining the global epigenetic state, which in turn drives genome architecture.



2021 ◽  
pp. 1-8
Author(s):  
Takuya Hayakawa ◽  
Rino Suzuki ◽  
Kazuhiro Kagotani ◽  
Katsuzumi Okumura ◽  
Shin-ichiro Takebayashi

E/L Repli-seq is a powerful tool for detecting cell type-specific replication landscapes in mammalian cells, but its potential to monitor DNA replication under replication stress awaits better understanding. Here, we used E/L Repli-seq to examine the temporal order of DNA replication in human retinal pigment epithelium cells treated with the topoisomerase I inhibitor camptothecin. We found that the replication profiles by E/L Repli-seq exhibit characteristic patterns after replication-stress induction, including the loss of specific initiation zones within individual early replication timing domains. We also observed global disappearance of the replication timing domain structures in the profiles, which can be explained by checkpoint-dependent suppression of replication initiation. Thus, our results demonstrate the effectiveness of E/L Repli-seq at identifying cells with replication-stress-induced altered DNA replication programs.



2011 ◽  
Vol 39 (6) ◽  
pp. 1719-1724 ◽  
Author(s):  
Mirjam Ketema ◽  
Arnoud Sonnenberg

The cytoskeleton is connected to the nuclear interior by LINC (linker of nucleoskeleton and cytoskeleton) complexes located in the nuclear envelope. These complexes consist of SUN proteins and nesprins present in the inner and outer nuclear membrane respectively. Whereas SUN proteins can bind the nuclear lamina, members of the nesprin protein family connect the nucleus to different components of the cytoskeleton. Nesprin-1 and -2 can establish a direct link with actin filaments, whereas nesprin-4 associates indirectly with microtubules through its interaction with kinesin-1. Nesprin-3 is the only family member known that can link the nuclear envelope to intermediate filaments. This indirect interaction is mediated by the binding of nesprin-3 to the cytoskeletal linker protein plectin. Furthermore, nesprin-3 can connect the nucleus to microtubules by its interactions with BPAG1 (bullous pemphigoid antigen 1) and MACF (microtubule–actin cross-linking factor). In contrast with the active roles that nesprin-1, -2 and -4 have in actin- and microtubule-dependent nuclear positioning, the role of nesprin-3 is likely to be more passive. We suggest that it helps to stabilize the anchorage of the nucleus within the cytoplasm and maintain the structural integrity and shape of the nucleus.



2006 ◽  
Vol 174 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Rong Wu ◽  
Prim B. Singh ◽  
David M. Gilbert

Mouse chromocenters are clusters of late-replicating pericentric heterochromatin containing HP1 bound to trimethylated lysine 9 of histone H3 (Me3K9H3). Using a cell-free system to initiate replication within G1-phase nuclei, we demonstrate that chromocenters acquire the property of late replication coincident with their reorganization after mitosis and the establishment of a global replication timing program. HP1 dissociated during mitosis but rebound before the establishment of late replication, and removing HP1 from chromocenters by competition with Me3K9H3 peptides did not result in early replication, demonstrating that this interaction is neither necessary nor sufficient for late replication. However, in cells lacking the Suv39h1,2 methyltransferases responsible for K9H3 trimethylation and HP1 binding at chromocenters, replication of chromocenter DNA was advanced by 10–15% of the length of S phase. Reintroduction of Suv39h1 activity restored the later replication time. We conclude that Suv39 activity is required for the fine-tuning of pericentric heterochromatin replication relative to other late-replicating domains, whereas separate factors establish a global replication timing program during early G1 phase.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Kychygina ◽  
Marina Dall’Osto ◽  
Joshua A. M. Allen ◽  
Jean-Charles Cadoret ◽  
Vincent Piras ◽  
...  

AbstractChromatin organization within the nuclear volume is essential to regulate many aspects of its function and to safeguard its integrity. A key player in this spatial scattering of chromosomes is the nuclear envelope (NE). The NE tethers large chromatin domains through interaction with the nuclear lamina and other associated proteins. This organization is perturbed in cells from Hutchinson–Gilford progeria syndrome (HGPS), a genetic disorder characterized by premature aging features. Here, we show that HGPS-related lamina defects trigger an altered 3D telomere organization with increased contact sites between telomeres and the nuclear lamina, and an altered telomeric chromatin state. The genome-wide replication timing signature of these cells is perturbed, with a shift to earlier replication for regions that normally replicate late. As a consequence, we detected a higher density of replication forks traveling simultaneously on DNA fibers, which relies on limiting cellular dNTP pools to support processive DNA synthesis. Remarkably, increasing dNTP levels in HGPS cells rescued fragile telomeres, and improved the replicative capacity of the cells. Our work highlights a functional connection between NE dysfunction and telomere homeostasis in the context of premature aging.



2017 ◽  
Vol 216 (7) ◽  
pp. 1869-1870
Author(s):  
María Gómez

The biological significance of conserved replication timing patterns in eukaryotic genomes remains a mystery. In this issue, Müller and Nieduszynski (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201701061) find that early replication is a requirement for the highest expression levels of certain genes.



2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Kohta Ikegami ◽  
Stefano Secchia ◽  
Omar Almakki ◽  
Alexis V Stutzman ◽  
Sachie Ikegami ◽  
...  

The segregation of heterochromatin domains (LADs) at the nuclear periphery by the nuclear lamina, composed by polymerized nuclear Lamin A/C, provides a longstanding paradigm for the control of gene expression and for the mechanisms underlying Lamin-A/C-associated disorders, including progeria and cardiomyopathy. Here, we provide evidence supporting a novel paradigm that Lamin A/C functions as a transcription factor in the nuclear interior. We discovered that Ser22-phosphorylated Lamin A/C (pS22-Lamin A/C), required for lamin depolymerization during mitosis, populated the nuclear interior throughout the cell cycle. pS22-Lamin A/C ChIP-deq demonstrated localization at a large subset of putative active enhancers, not LADs. pS22-Lamin A/C-binding sites were co-occupied by the transcriptional activator c-Jun. In progeria patient-derived fibroblasts, a subset of pS22-Lamin A/C-binding sites were lost whereas new pS22-Lamin A/C-binding sites emerged. New pS22-Lamin A/C binding was accompanied by increased histone acetylation and increased c-Jun binding, whereas loss of pS22-Lamin A/C-binding was accompanied by loss of histone acetylation and c-Jun binding. New pS22-Lamin A/C enhancer binding in progeria was associated with upregulated expression of genes implicated in progeria pathophysiology, including cardiovascular disease. In contrast, alteration of LADs in progeria-patient cells could not explain the observed gene expression changes. These results suggest that Lamin A/C regulates gene expression by enhancer binding in the nuclear interior, independent of its function at the nuclear lamina, providing a new paradigm for the pathogenesis of lamin-associated disorders. pS22-Lamin A/C was also present in the nuclear interior of adult mouse cardiomyocytes. Cardiomyocyte-specific deletion of Lmna encoding Lamin A/C in adult mice caused extensive transcriptional changes in the heart and dilated cardiomyopathy, without apparent reduction of nuclear peripheral Lamin A/C. Disruption of the gene regulatory rather than LAD tethering function of Lamin A/C may underlie the pathogenesis of disorders caused by LMNA mutations, including cardiomyopathy.



2019 ◽  
Author(s):  
Emily C. Stow ◽  
Ran An ◽  
Todd A. Schoborg ◽  
Nastasya M. Davenport ◽  
James R. Simmons ◽  
...  

AbstractInsulators play important roles in genome structure and function in Drosophila and mammals. More than six different insulator proteins are required in Drosophila for normal genome function, whereas CTCF is the only identified protein contributing to insulator function in mammals. Interactions between a DNA binding insulator protein and its interacting partner proteins define the properties of each insulator site. The different roles of insulator protein partners in the Drosophila genome and how they confer functional specificity remain poorly understood. Functional analysis of insulator partner proteins in Drosophila is necessary to understand how genomes are compartmentalized and the roles that different insulators play in genome function. In Drosophila, the Suppressor of Hairy wing [Su(Hw)] insulator is targeted to the nuclear lamina, preferentially localizes at euchromatin/heterochromatin boundaries, and is associated with the Gypsy retrotransposon. The properties that the insulator confers to these sites rely on the ability of the Su(Hw) protein to bind the DNA at specific sites and interact with Mod(mdg4)-67.2 and CP190 partner proteins. HP1 and insulator partner protein 1 (HIPP1) is a recently identified partner of Su(Hw), but how HIPP1 contributes to the function of Su(Hw) insulators has not yet been elucidated. Here, we find that mutations in the HIPP1 crotonase-like domain have no impact on the function of Su(Hw) enhancer-blocking activity but do exhibit an impaired ability to repair double-strand breaks. Additionally, we find that the overexpression of each HIPP1 and Su(Hw) causes defects in cell proliferation by limiting the progression of DNA replication. We also find that HIPP1 overexpression suppresses the Su(Hw) insulator enhancer-blocking function.



Author(s):  
Lilas Courtot ◽  
Elodie Bournique ◽  
Chrystelle Maric ◽  
Laure Guitton-Sert ◽  
Miguel Madrid-Mencía ◽  
...  

ABSTRACTDNA replication is well orchestrated in mammalian cells through a tight regulation of the temporal order of replication origin activation, named the replication timing, a robust and conserved process in each cell type. Upon low replication stress, the slowing of replication forks induces delayed replication of fragile regions leading to genetic instability. The impact of low replication stress on the replication timing in different cellular backgrounds has not been explored yet. Here we analysed the whole genome replication timing in a panel of 6 human cell lines under low replication stress. We first demonstrated that cancer cells were more impacted than non-tumour cells. Strikingly, we unveiled an enrichment of specific replication domains undergoing a switch from late to early replication in some cancer cells. We found that advances in replication timing correlate with heterochromatin regions poorly sensitive to DNA damage signalling while being subject to an increase of chromatin accessibility. Finally, our data indicate that, following release from replication stress conditions, replication timing advances can be inherited by the next cellular generation, suggesting a new mechanism by which cancer cells would adapt to cellular or environmental stress.



Sign in / Sign up

Export Citation Format

Share Document