transcript map
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 3)

H-INDEX

24
(FIVE YEARS 0)

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Adrian Sven Geissler ◽  
Christian Anthon ◽  
Ferhat Alkan ◽  
Enrique González-Tortuero ◽  
Line Dahl Poulsen ◽  
...  

A large part of our current understanding of gene regulation in Gram-positive bacteria is based on Bacillus subtilis , as it is one of the most well studied bacterial model systems. The rapid growth in data concerning its molecular and genomic biology is distributed across multiple annotation resources. Consequently, the interpretation of data from further B. subtilis experiments becomes increasingly challenging in both low- and large-scale analyses. Additionally, B. subtilis annotation of structured RNA and non-coding RNA (ncRNA), as well as the operon structure, is still lagging behind the annotation of the coding sequences. To address these challenges, we created the B. subtilis genome atlas, BSGatlas, which integrates and unifies multiple existing annotation resources. Compared to any of the individual resources, the BSGatlas contains twice as many ncRNAs, while improving the positional annotation for 70 % of the ncRNAs. Furthermore, we combined known transcription start and termination sites with lists of known co-transcribed gene sets to create a comprehensive transcript map. The combination with transcription start/termination site annotations resulted in 717 new sets of co-transcribed genes and 5335 untranslated regions (UTRs). In comparison to existing resources, the number of 5′ and 3′ UTRs increased nearly fivefold, and the number of internal UTRs doubled. The transcript map is organized in 2266 operons, which provides transcriptional annotation for 92 % of all genes in the genome compared to the at most 82 % by previous resources. We predicted an off-target-aware genome-wide library of CRISPR–Cas9 guide RNAs, which we also linked to polycistronic operons. We provide the BSGatlas in multiple forms: as a website (https://rth.dk/resources/bsgatlas/), an annotation hub for display in the UCSC genome browser, supplementary tables and standardized GFF3 format, which can be used in large scale -omics studies. By complementing existing resources, the BSGatlas supports analyses of the B. subtilis genome and its molecular biology with respect to not only non-coding genes but also genome-wide transcriptional relationships of all genes.


2019 ◽  
Author(s):  
Adrian Sven Geissler ◽  
Christian Anthon ◽  
Enrique González-Tortuero ◽  
Line Dahl Poulsen ◽  
Thomas Beuchert Kallehauge ◽  
...  

AbstractThe genome of Bacillus subtilis continues to provide exiting genomic insights. However, the growing collective genomic knowledge about this micro-organism is spread across multiple annotation resources. Thus, the full annotation is not directly accessible neither for specific genes nor for large-scale high-throughput analyses. Furthermore, access to annotation of non-coding RNA genes (ncRNAs) and polycistronic mRNAs is difficult. To address these challenges we introduce the Bacillus subtilis genome atlas, BSGatlas, in which we integrate and unify multiple existing annotation resources. Our integration provides twice as many ncRNAs than the individual resources, improves the positional annotation for 70% of the combined ncRNAs, and makes it possible to infer specific ncRNA types. Moreover, we unify known transcription start sites, termination, and transcriptional units (TUs) as a comprehensive transcript map. This transcript map implies 815 new TUs and 6, 164 untranslated regions (UTRs), which is a five-fold increase over existing resources. We furthermore, find 2, 309 operons covering the transcriptional annotation for 93% of all genes, corresponding to an improvement by 11%. The BSGatlas is available in multiple formats. A user can either download the entire annotation in the standardized GFF3 format, which is compatible with most bioinformatics tools for omics and high-throughput studies, or view the annotation in an online browser at http://rth.dk/resources/bsgatlas.ImportanceThe Bacillus subtilis genome has been studied in numerous context and consequently multiple efforts have been made in providing a complete annotation. Unfortunately, a number of resources are no longer maintained, and (i) the collective annotation knowledge is dispersed over multiple resources, of which each has a different focus of what type of annotation information they provide. (ii) Thus, it is difficult to easily and at a large scale obtain information for a genomic region or genes of interest. (iii) Furthermore, all resources are essentially incomplete when it comes to annotating non-coding and structured RNA, and transcripts in general. Here, we address all three problems by first collecting existing annotations of genes and transcripts start and termination sites; afterwards resolving discrepancies in annotations and combining them, which doubled the number of ncRNAs; inferring full transcripts and 2,309 operons from the combined knowledge of known transcript boundaries and meta-information; and critically providing it all in a standardized UCSC browser. That interface and its powerful set of functionalities allow users to access all the information in a single resource as well as enables them to include own data on top the full annotation.


2011 ◽  
Vol 122 (8) ◽  
pp. 1577-1589 ◽  
Author(s):  
Neha Gujaria ◽  
Ashish Kumar ◽  
Preeti Dauthal ◽  
Anuja Dubey ◽  
Pavana Hiremath ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 719-726 ◽  
Author(s):  
John M. Joslin ◽  
Anthony A. Fernald ◽  
Thelma R. Tennant ◽  
Elizabeth M. Davis ◽  
Scott C. Kogan ◽  
...  

AbstractLoss of a whole chromosome 5 or a deletion of the long arm, del(5q), is a recurring abnormality in myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). To identify a leukemia-related gene on chromosome 5, we previously delineated a 970-kb segment of 5q31 that is deleted in all patients examined, and prepared a transcript map of this region. EGR1 is a candidate tumor suppressor gene within the commonly deleted segment of 5q, and encodes a zinc finger transcription factor. To test the hypothesis that loss of function of Egr1 is an initiating event in the pathogenesis of AML/MDS, Egr1-deficient mice were treated with a potent DNA alkylating agent, N-ethyl-nitrosourea (ENU), to induce secondary cooperating mutations. Egr1+/− and Egr1−/− mice treated with ENU developed immature T-cell lymphomas (CD4+, CD8+) or a myeloproliferative disorder (MPD) at increased rates and with shorter latencies than that of wild-type littermates. The MPD was characterized by an elevated white blood cell count, anemia, and thrombocytopenia with ineffective erythropoiesis. Biallelic mutations of Egr1 were not observed in MPDs in Egr1+/− mice. Our data suggest that haploinsufficiency for Egr1 plays a role in murine leukemogenesis, and in the development of AML/MDS characterized by abnormalities of chromosome 5.


Genetics ◽  
2007 ◽  
Vol 176 (1) ◽  
pp. 685-696 ◽  
Author(s):  
Ik-Young Choi ◽  
David L. Hyten ◽  
Lakshmi K. Matukumalli ◽  
Qijian Song ◽  
Julian M. Chaky ◽  
...  

2007 ◽  
Vol 114 (5) ◽  
pp. 823-839 ◽  
Author(s):  
Nils Stein ◽  
Manoj Prasad ◽  
Uwe Scholz ◽  
Thomas Thiel ◽  
Hangning Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document