Random Vibration Fatigue Life Assessment of Transmission Control Module (TCM) Bracket Considering the Mean Stress Effect due to Preload

2020 ◽  
Author(s):  
Neeraj Carpenter ◽  
Sudeep Yesudas ◽  
Michael D. Nienhuis
2006 ◽  
Vol 129 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Efrén Ayala-Uraga ◽  
Torgeir Moan

An efficient time-variant reliability formulation for the safety assessment of an aging floating production storage and offloading (FPSO) vessels with the presence of through-thickness cracks (i.e., long cracks), is presented in this paper. Often in ship structures, cracks are detected by means of close visual inspection when they have already propagated through the thickness. The propagation of long cracks in stiffened panels is therefore considered, as they may be present in critical details of the deck and/or bottom plating of the vessel. Although it has been found that stiffened panels are tolerant to fatigue cracking, the safety of such structural components with the presence of long cracks may be threatened when exposed to overload extreme conditions, i.e., brittle or ductile fracture may occur. The probability of brittle fracture of an aging hull structure, i.e., a stiffened panel at the bottom plating with the presence of long cracks is studied in this paper. The mean stress effect due to the continuously varying still-water loading as well as residual stresses is explicitly accounted for in the crack growth calculation procedure presented herein. An analytical model is established for determining the equivalent long-term stress range including the mean stress effect. The continuously varying still-water load effects due to the operational nature of FPSOs introduce additional uncertainties in the estimation of fatigue damage as well as in the likelihood of fracture failure mode. In the present case study it is found that the time-invariant approach is a good approximation when dealing with the time-variant reliability problem. One of the main conclusions drawn from this study is that the still-water mean stress has a significant effect on the failure probabilities of stiffened panels with long cracks under brittle fracture mode.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 251 ◽  
Author(s):  
Michał Böhm ◽  
Karolina Głowacka

This paper describes the current state-of-the-art in fatigue life assessment for lightweight composite structures with the use of the frequency domain fatigue life calculation method. Random stationary gaussian loading signals have been generated and served in the process of fatigue calculation. The material information that is being used in the calculation process has been obtained from literature for the Glare 2 composite. The effect of nonzero mean stress and different fiber orientations have been taken into account. The calculations have been performed for two mean stress compensation models by Goodman and Gerber. The proposed procedure gives satisfying results for the high-cycle fatigue region for Goodman and an overall good comparison in both regimes for the Gerber model.


Author(s):  
Masayuki Kamaya

The mean stress effect on the fatigue life of Type 316 stainless steel was investigated at 325°C in simulated PWR primary water. It was shown that, as shown in high-temperature air environment, the fatigue life was extended by applying the mean stress under the same stress amplitude. An increase in the maximum peak stress by applying the mean stress induced additional plastic strain and this hardened the material. On the other hand, the fatigue life was shortened by the mean stress for the same strain range. The ratcheting strain caused by applying mean stress accelerated crack mouth opening and reduced fatigue life. It was also shown that the fatigue life in the simulated PWR primary water was shorter than that in air even without the mean stress. The magnitude of the reduction depended on the strain range. The reduction in fatigue life was the maximum when the strain range was 0.6%. The environmental effect disappeared when the effective strain was less than 0.4%.


Author(s):  
Yun Wang ◽  
Hisamitsu Hatoh ◽  
Masato Yamamoto ◽  
Motoki Nakane ◽  
Akihiko Hirano ◽  
...  

Based on the precedent design fatigue curves and recent fatigue data obtained from materials with different mechanical properties, new design fatigue curves with high general versatility in air have been developed by The Japan Welding Engineering Society (JWES). Structural materials with different tensile strength are utilized in fatigue tests to verify the validity of these design fatigue curves and discuss the mean stress effect. The materials employed in this study are austenitic stainless steel (SS) SUS316LTP, carbon steel (CS) STPT370, low-alloy steels (LASs) SQV2A and SCM435H, all of which are used in the structural components of nuclear power plants of Japan. The best-fit curves (BFCs) are formulated by using the parameter of tensile strength to describe the relationship between strain (stress) amplitude and fatigue life [1]. The results of fully reversed axial fatigue tests conducted with small-scale test specimens of those materials in air at ambient temperature show good agreement with the developed BFCs. The results of fatigue tests also indicate that the mean stress effect is remarkable in materials with higher tensile strength. The applicability of Modified Goodman and Smith-Watson-Topper (SWT) approaches to the design fatigue curves is compared and discussed when considering mean stress effect. The correction of mean stress effect with SWT approach shows a good agreement with the developed BFCs.


Sign in / Sign up

Export Citation Format

Share Document