horizontal gene transfer event
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sarina Tsui ◽  
Welington Luiz Araújo

Abstract This study describes the n-TASE cluster in Burkholderia seminalis TC3.4.2R3, which was present in B. contaminans (CP046609.1), but absent in other related Burkholderia species. Phylogeny, comparative genomics and molecular analysis indicated it is not common to B. seminalis species, presenting similarity with homologous genes presents Aquamicrobium sp. SK-2 and B. contaminans LMG23361, probably acquired by an HGT (Horizontal Gene Transfer) event. It was not possible to determine which was the most likely donor strain of the n-TASE cluster. The HGT event did not occur in all strains of the Bcc group, nor in the B. seminalis, but it did occur punctually in the strain B. seminalis TC34.2R3. It has a correlation in biotechnological applications related processes. Aiming at understanding the involvement of the n-TASE cluster in the interaction of this bacterium in the environment, genes in this cluster will be inactivated, next.


2021 ◽  
Author(s):  
David S. Milner ◽  
Jeremy G. Wideman ◽  
Courtney W. Stairs ◽  
Cory D. Dunn ◽  
Thomas A. Richards

AbstractThe overarching trend in mitochondrial evolution is functional streamlining coupled with gene loss; therefore, gene acquisition by mitochondria is considered to be exceedingly rare. Selfish elements in the form of self-splicing introns occur in many organellar genomes, but the wider diversity of selfish elements, and how they persist in organellar genomes, has not been explored. In the mitochondrial genome of a marine heterotrophic katablepharid protist, we identify a functional type II restriction modification system originating from a horizontal gene transfer event involving bacteria related to flavobacteria. This restriction modification system consists of an HpaII-like endonuclease and a cognate cytosine methyltransferase. We demonstrate that these proteins are functional by heterologous expression in both bacterial and eukaryotic cells. These results suggest that toxin-antitoxin selfish elements, such as restriction modification systems, could be co-opted by eukaryotic genomes to drive uniparental organellar inheritance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simran Krishnakant Kushwaha ◽  
Narra Lakshmi Sai Bhavesh ◽  
Bahaa Abdella ◽  
Chandrajit Lahiri ◽  
Sandhya Amol Marathe

AbstractSalmonellae display intricate evolutionary patterns comprising over 2500 serovars having diverse pathogenic profiles. The acquisition and/or exchange of various virulence factors influences the evolutionary framework. To gain insights into evolution of Salmonella in association with the CRISPR-Cas genes we performed phylogenetic surveillance across strains of 22 Salmonella serovars. The strains differed in their CRISPR1-leader and cas operon features assorting into two main clades, CRISPR1-STY/cas-STY and CRISPR1-STM/cas-STM, comprising majorly typhoidal and non-typhoidal Salmonella serovars respectively. Serovars of these two clades displayed better relatedness, concerning CRISPR1-leader and cas operon, across genera than between themselves. This signifies the acquisition of CRISPR1/Cas region could be through a horizontal gene transfer event owing to the presence of mobile genetic elements flanking CRISPR1 array. Comparison of CRISPR and cas phenograms with that of multilocus sequence typing (MLST) suggests differential evolution of CRISPR/Cas system. As opposed to broad-host-range, the host-specific serovars harbor fewer spacers. Mapping of protospacer sources suggested a partial correlation of spacer content with habitat diversity of the serovars. Some serovars like serovar Enteritidis and Typhimurium that inhabit similar environment/infect similar hosts hardly shared their protospacer sources.


2020 ◽  
Author(s):  
Simran Krishnakant Kushwaha ◽  
Chandrajit Lahiri ◽  
Bahaa Abdella ◽  
Sandhya Amol Marathe

AbstractSalmonellae display intricate evolutionary patterns comprising over 2500 serovars having diverse pathogenic profiles. The acquisition/exchange of various virulence factors influence the evolutionary framework. To gain insights into evolution of Salmonella as a pathogen in association with the CRISPR-Cas genes we performed phylogenetic surveillance across strains of 22 Salmonella serovars. The strains assorted into two main clades, pertaining to the differences in their CRISPR1-leader and cas operon. Considering Salmonella enterica subsp. enterica serovar Typhimurium and serovar Typhi as signature serovars, we classified the clades as CRISPR1-STM/cas-STM and CRISPR1-STY/cas-STY, respectively. Serovars of the two clades displayed better relatedness, concerning CRISPR-1 leader and cas operon, across genera than between themselves. This signifies the acquisition of CRISPR1/Cas region a horizontal gene transfer event owing to the presence of mobile genetic elements flanking CRISPR1 array. The CRISPR2 tree does not show such relation. Spacer mapping of the two CRISPR arrays suggests the construct to be canonical, with only 8.8% spacer conservation among the serovars. As opposed to broad-host-range serovars, the host-specific serovars harbor fewer spacers. All typhoidal serovars have CRISPR1-STY/cas-STY system. Comparison of CRISPR and cas phenograms with that of multilocus sequence typing (MLST) suggests differential evolution of CRISPR/Cas system implying supplementary roles beyond immunity.


2020 ◽  
Vol 117 (9) ◽  
pp. 5059-5066 ◽  
Author(s):  
Cíntia L. Ribeiro ◽  
Daniel Conde ◽  
Kelly M. Balmant ◽  
Christopher Dervinis ◽  
Matthew G. Johnson ◽  
...  

The radiation of angiosperms led to the emergence of the vast majority of today’s plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene,ENLARGED VESSEL ELEMENT(EVE),contributes to the dimensions of vessel elements inPopulus, impacting hydraulic conductivity. Our data suggest thatEVEis localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants,EVEfirst emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition ofEVEindicates that it may have been involved in an ancient horizontal gene-transfer event.


2019 ◽  
Author(s):  
David A. Baltrus ◽  
Caitlin Smith ◽  
MacKenzie Derrick ◽  
Courtney Leligdon ◽  
Zoe Rosenthal ◽  
...  

AbstractHorizontal gene transfer is a significant driver of evolutionary dynamics across microbial populations. Although the benefits of the acquisition of new genetic material are often quite clear, experiments across systems have demonstrated that gene transfer events can cause significant phenotypic changes and entail fitness costs in a way that is dependent on the genomic and environmental context. Here we test for the generality of one previously identified cost, sensitization of cells to the antibiotic nalidixic acid after acquisition of a ∼1Mb megaplasmid, across Pseudomonas strains and species. Overall, we find that the presence of this megaplasmid sensitizes many different Pseudomonas strains to nalidixic acid, but that this same horizontal gene transfer event increases resistance of Pseudomonas putida KT2440 to nalidixic acid across assays as well as to ciprofloxacin under competitive conditions. These phenotypic results are not easily explained away as secondary consequences of overall fitness effects and appear to occur independently of another cost associated with this megaplasmid, sensitization to higher temperatures. Lastly, we draw parallels between these reported results and the phenomenon of sign epistasis for de novo mutations and explore how context dependence of effects of plasmid acquisition could impact overall evolutionary dynamics and the evolution of antimicrobial resistance.ImportanceNumerous studies have demonstrated that gene transfer events (e.g. plasmid acquisition) can entail a variety of costs that arise as byproducts of the incorporation of foreign DNA into established physiological and genetic systems. These costs can be ameliorated through evolutionary time by the occurrence of compensatory mutations, which stabilize presence of a horizontally transferred region within the genome but which also may skew future adaptive possibilities for these lineages. Here we demonstrate another possible outcome, that phenotypic changes arising as a consequence of the same horizontal gene transfer event are costly to some strains but may actually be beneficial in other genomic backgrounds under the right conditions. These results provide new a new viewpoint for considering conditions that promote plasmid maintenance and highlight the influence of genomic and environmental contexts when considering amelioration of fitness costs after HGT events.


Mobile DNA ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria A. Daugavet ◽  
Sergey Shabelnikov ◽  
Alexander Shumeev ◽  
Tatiana Shaposhnikova ◽  
Leonid S. Adonin ◽  
...  

2018 ◽  
Vol 63 (3) ◽  
pp. 617-633 ◽  
Author(s):  
Ferenc Orosz

Abstract Apicortin is a characteristic protein of apicomplexan parasites which has recently been identified in their free-living cousins, chromerids as well. The placozoan Trichoplax adhaerens is the only animal possessing this protein and apicortin is one of its most abundant proteins. The recently published transcriptome of the cnidarian Porites astreoides contains an apicortin-like sequence. Other cnidarians do not have it, thus it is its first occurrence not only in this phylum but also in Eumetazoa. However, its translated amino acid sequence is more similar to apicomplexan apicortins than to that of T. adhaerens, the GC ratio is much higher than either the genome-wide GC ratio of P. astreoides or that of the placozoan apicortin gene, and phylogenetic analyses suggest that this apicortin has an apicomplexan origin. Although these data might be indicative for a horizontal gene transfer event, we should be cautious to state it; it is more probable that it is a contamination from a gregarine, a marine Apicomplexa. Thus T. adhaerens remains the only animal where the presence of apicortin is proved.


2011 ◽  
Vol 24 (12) ◽  
pp. 1482-1491 ◽  
Author(s):  
Jeffrey J. Coleman ◽  
Catherine C. Wasmann ◽  
Toshiyuki Usami ◽  
Gerard J. White ◽  
Esteban D. Temporini ◽  
...  

The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda– F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.


Sign in / Sign up

Export Citation Format

Share Document