resisting medium
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 3 (2) ◽  
pp. 103-116
Author(s):  
Ya. Sviatenko ◽  

The possibility of stabilizing an unstable uniform rotation in a resisting medium of a "sleeping" Lagrange gyroscope using a rotating second gyroscope and elastic spherical hinges is considered. The "sleeping" gyroscope rotates around a fixed point with an elastic recovery spherical hinge, and the second gyroscope is located above it. The gyroscopes are also connected by an elastic spherical restorative hinge and their rotation is supported by constant moments directed along their axes of rotation. It is shown that stabilization will be impossible in the absence of elasticity in the common joint and the coincidence of the center of mass of the second gyroscope with its center. With the help of the kinetic moment of the second gyroscope and the elasticity coefficients of the hinges, on the basis of an alternative approach, the stabilization conditions obtained in the form of a system of three inequalities and the conditions found on the elasticity coefficients at which the leading coefficients of these inequalities are positive. It is shown that stabilization will always be possible at a sufficiently large angular velocity of rotation of the second gyroscope under the assumption that the center of mass of the second gyroscope and the mechanical system are below the fixed point. The possibility of stabilizing the unstable uniform rotation of the "sleeping" Lagrange gyroscope using the second gyroscope and elastic spherical joints in the absence of dissipation is also considered. The "sleeping" gyroscope rotates at an angular velocity that does not meet the Mayevsky criterion. It is shown that stabilization will be impossible in the absence of elasticity in the common joint and the coincidence of the center of mass of the second gyroscope with its center. On the basis of the innovation approach, stabilization conditions were obtained in the form of a system of three irregularities using the kinetic moment of the second gyroscope and the elastic coefficients of the hinges. The condition for the angular momentum of the first gyroscope and the elastic coefficients at which the leading coefficients of these inequalities are positive are found. It is shown that if the condition for the angular momentum of the first gyroscope is fulfilled, stabilization will always be possible at a sufficiently large angular velocity of rotation of the second gyroscope, and in this case the center of mass of the second gyroscope can be located above the fixed point.


2021 ◽  
Vol 20 ◽  
pp. 232-243
Author(s):  
Maxim V. Shamolin

Proposed activity presents next stage of the study of the problem of the plane-parallel motion of a rigid body interacting with a resistant medium through the frontal plane part of its external surface. Under constructing of the force acting of medium, we use the information on the properties of medium streamline fl w around in quasistationarity conditions (for instance, on the homogeneous circular cylinder input into the water). The medium motion is not studied, and we consider such problem in which the characteristic time of the body motion with respect to its center of masses is comparable with the characteristic time of motion of the center of masses itself.


Author(s):  
Yurii Kononov ◽  
Yaroslav Sviatenko

The conditions for asymptotic stability of uniform rotations in a resisting medium of two heavy Lagrange gyroscopes connected by an elastic spherical hinge are obtained in the form of a system of three inequalities. The bottom gyroscope has a fixed point. The rotation of the gyroscopes is maintained by constant moments in the inertial coordinate system. The influence of the elasticity of the hinge on the stability conditions is estimated. It is shown that for a sufficiently high rigidity of the hinge, the asymptotic stability conditions are determined by only one inequality, which coincides with the inequality obtained for the case of a cylindrical hinge. When the angular velocities of the gyroscopes' own rotations coincide, this inequality coincides with the well--known condition for one gyroscope. Cases of degeneration of an elastic spherical hinge into a spherical inelastic, cylindrical and universal elastic hinge (Hooke's hinge) are considered. For the Hooke hinge, it is shown that there is no asymptotic stability at a sufficiently high angular velocity of gyroscopes rotation.


2020 ◽  
Vol 32 ◽  
pp. 196-200
Author(s):  
G. U. Mamatova ◽  
B. Hamzina ◽  
A. О. Kabdoldina ◽  
А. K. Sugirbekova ◽  
R. A. Berkutbaeva

2020 ◽  
Vol 130 ◽  
pp. 109395 ◽  
Author(s):  
G.M. Ismail ◽  
H.R. Abdl-Rahim ◽  
A. Abdel-Aty ◽  
R. Kharabsheh ◽  
W. Alharbi ◽  
...  

Author(s):  
Yuri Kononov ◽  
Yaroslav Sviatenko

In many works, there are studies of the asymptotic stability of rotation of a free Lagrange gyroscope in a resisting medium. This article generalizes this problem to the case of uniform rotations of two free Lagrange gyroscopes connected by an elastic restoring spherical hinge. The rotation of each gyroscope is maintained by a constant moment in an inertial coordinate system. The characteristic equation of the perturbed motion is presented in the form of an algebraic equation of the fourth degree with complex coefficients. Based on the innor approach, conditions of asymptotic stability are obtained in the form of a system of three inequalities. The left-hand side of these inequalities is represented, respectively, in the form of determinants of the third, fifth, and seventh orders. Up to first-order values of smallness, relative to the reciprocal of the stiffness coefficient, a study is made of the effect of the joint stiffness on stability conditions. From the conditions of positivity of the highest coefficients in three inequalities, it is shown that for a sufficiently large rigidity, the stability conditions are determined by only one inequality. Cases of degeneration of an elastic spherical joint into a spherical inelastic, cylindrical, and universal elastic joint (Hooke's joint) are considered. In the case of an inelastic spherical joint, the system of three inequalities is slightly simplified. The greatest simplification arises in the case of a cylindrical hinge. In this case, the characteristic equation is represented as a quadratic equation with complex coefficients. According to the innoric approach, the conditions of asymptotic stability are written in the form of a single inequality, the left side of which is presented in the form of third-order determinants. It is shown that this inequality coincides with the inequality obtained earlier for the case of a sufficiently large rigidity of the hinge. If the angular velocities of the proper rotations of the gyroscopes coincide, the inequality obtained for the cylindrical hinge coincides with the well-known inequality for one gyroscope. In the case of a universal elastic hinge (Hooke's hinge), the first inequality is represented as a square inequality with respect to the angular velocity of proper rotation.


Author(s):  
Yuri Kononov ◽  
Valeriya Vasylenko

The rotation around a fixed point of a heavy dynamically symmetric solid body with an arbitrary asymmetric cavity completely filled with an ideal in-compressible liquid is considered. The stability of a uniform rotation of a Lagrang' top with the ideal liquid in a resisting medium under condition of a given constant moment is investigated. The equation of the perturbed motion of the Lagrang' top with the ideal liquid is presented. It is proved the follow-ing: the asymptotic stability of uniform rotation for an ellipsoidal cavity will be only for a compressed ellipsoidal cavity. It has been observed that most practically important cases consider the main effect of the ideal liquid influence on the motion of a solid can be researched by means of considering only the fundamental tone of the liquid oscillation. Conditions of uniform rotation asymptotic stability in a resistive medium under the action of the Lagrange top' constant moment with an arbitrary axisymmetric cavity containing an ideal liquid are obtained. Stability conditions are derived with provisions for the main and additional tones of liquid oscillations. The heavy solid body with the fixed-point value is ex-posed to the action of a constant moment in the inertial coordinate system. Analytic and numerical investigations of the main and additional tones of liquid oscillations influence, over-turning, restoring, dissipative and constant moments on the conditions of the asymptotic stability of the uniform rotation of the Lagrange top with an ideal liquid are carried out. It is stated the following: cubic and square inequalities presented in the paper are conditions of asymptotic stability if the basic tone of liquid fluctuations will be mentioned. Stability region numerical studies have been carried out on the example of an ellipsoidal cavity. It is presented that increasing of the equatorial moment of inertia of the solid body de-creases its stability region as well as the increasing of the solid body inertia axial moment in-creases the last one.


2018 ◽  
Vol 54 (6) ◽  
pp. 710-717 ◽  
Author(s):  
A. L. Rachinskaya ◽  
E. A. Rumyantseva
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document