human sleep
Recently Published Documents


TOTAL DOCUMENTS

592
(FIVE YEARS 61)

H-INDEX

70
(FIVE YEARS 5)

2022 ◽  

Abstract Research Square has withdrawn this preprint due to extensive overlap with another posted article.


2022 ◽  
pp. 1-12
Author(s):  
Dayna A. Johnson ◽  
Charles A. Czeisler
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 55
Author(s):  
Mo H. Modarres ◽  
Jonathan E. Elliott ◽  
Kristianna B. Weymann ◽  
Dennis Pleshakov ◽  
Donald L. Bliwise ◽  
...  

Surface electromyography (EMG), typically recorded from muscle groups such as the mentalis (chin/mentum) and anterior tibialis (lower leg/crus), is often performed in human subjects undergoing overnight polysomnography. Such signals have great importance, not only in aiding in the definitions of normal sleep stages, but also in defining certain disease states with abnormal EMG activity during rapid eye movement (REM) sleep, e.g., REM sleep behavior disorder and parkinsonism. Gold standard approaches to evaluation of such EMG signals in the clinical realm are typically qualitative, and therefore burdensome and subject to individual interpretation. We originally developed a digitized, signal processing method using the ratio of high frequency to low frequency spectral power and validated this method against expert human scorer interpretation of transient muscle activation of the EMG signal. Herein, we further refine and validate our initial approach, applying this to EMG activity across 1,618,842 s of polysomnography recorded REM sleep acquired from 461 human participants. These data demonstrate a significant association between visual interpretation and the spectrally processed signals, indicating a highly accurate approach to detecting and quantifying abnormally high levels of EMG activity during REM sleep. Accordingly, our automated approach to EMG quantification during human sleep recording is practical, feasible, and may provide a much-needed clinical tool for the screening of REM sleep behavior disorder and parkinsonism.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Claus Metzner ◽  
Achim Schilling ◽  
Maximilian Traxdorf ◽  
Holger Schulze ◽  
Patrick Krauss

AbstractIn clinical practice, human sleep is classified into stages, each associated with different levels of muscular activity and marked by characteristic patterns in the EEG signals. It is however unclear whether this subdivision into discrete stages with sharply defined boundaries is truly reflecting the dynamics of human sleep. To address this question, we consider one-channel EEG signals as heterogeneous random walks: stochastic processes controlled by hyper-parameters that are themselves time-dependent. We first demonstrate the heterogeneity of the random process by showing that each sleep stage has a characteristic distribution and temporal correlation function of the raw EEG signals. Next, we perform a super-statistical analysis by computing hyper-parameters, such as the standard deviation, kurtosis, and skewness of the raw signal distributions, within subsequent 30-second epochs. It turns out that also the hyper-parameters have characteristic, sleep-stage-dependent distributions, which can be exploited for a simple Bayesian sleep stage detection. Moreover, we find that the hyper-parameters are not piece-wise constant, as the traditional hypnograms would suggest, but show rising or falling trends within and across sleep stages, pointing to an underlying continuous rather than sub-divided process that controls human sleep. Based on the hyper-parameters, we finally perform a pairwise similarity analysis between the different sleep stages, using a quantitative measure for the separability of data clusters in multi-dimensional spaces.


2021 ◽  
Author(s):  
Lea Himmer ◽  
Zoé Bürger ◽  
Leonie Fresz ◽  
Janina Maschke ◽  
Lore Wagner ◽  
...  

Reactivation of newly acquired memories during sleep across hippocampal and neocortical systems is proposed to underlie systems memory consolidation. Here, we investigate spontaneous memory reprocessing during sleep by applying machine learning to source space-transformed magnetoencephalographic data in a two-step exploratory and confirmatory study design. We decode memory-related activity from slow oscillations in hippocampus, frontal cortex and precuneus, indicating parallel memory processing during sleep. Moreover, we show complementary roles of hippocampus and neocortex: while gamma activity indicated memory reprocessing in hippocampus, delta and theta frequencies allowed decoding of memory in neocortex. Neocortex and hippocampus were linked through coherent activity and modulation of high-frequency gamma oscillations by theta, a dynamic similar to memory processing during wakefulness. Overall, we noninvasively demonstrate localized, coordinated memory reprocessing in human sleep.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kelton Minor ◽  
Andreas Bjerre Nielsen ◽  
Sigga Jonasdottir ◽  
Sune Lehmann ◽  
Nick Obradovich

Sign in / Sign up

Export Citation Format

Share Document