scholarly journals Validation of Visually Identified Muscle Potentials during Human Sleep Using High Frequency/Low Frequency Spectral Power Ratios

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 55
Author(s):  
Mo H. Modarres ◽  
Jonathan E. Elliott ◽  
Kristianna B. Weymann ◽  
Dennis Pleshakov ◽  
Donald L. Bliwise ◽  
...  

Surface electromyography (EMG), typically recorded from muscle groups such as the mentalis (chin/mentum) and anterior tibialis (lower leg/crus), is often performed in human subjects undergoing overnight polysomnography. Such signals have great importance, not only in aiding in the definitions of normal sleep stages, but also in defining certain disease states with abnormal EMG activity during rapid eye movement (REM) sleep, e.g., REM sleep behavior disorder and parkinsonism. Gold standard approaches to evaluation of such EMG signals in the clinical realm are typically qualitative, and therefore burdensome and subject to individual interpretation. We originally developed a digitized, signal processing method using the ratio of high frequency to low frequency spectral power and validated this method against expert human scorer interpretation of transient muscle activation of the EMG signal. Herein, we further refine and validate our initial approach, applying this to EMG activity across 1,618,842 s of polysomnography recorded REM sleep acquired from 461 human participants. These data demonstrate a significant association between visual interpretation and the spectrally processed signals, indicating a highly accurate approach to detecting and quantifying abnormally high levels of EMG activity during REM sleep. Accordingly, our automated approach to EMG quantification during human sleep recording is practical, feasible, and may provide a much-needed clinical tool for the screening of REM sleep behavior disorder and parkinsonism.

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A300-A300
Author(s):  
Y Lee ◽  
B Lee

Abstract Introduction REM sleep Behavior Disorder (RBD) is characterized by dream enacting behaviors and a loss of atonia during REM sleep. Early detection of RBD is important because it is considered premonitory symptoms neurodegenerative disorders. In this study, we investigated the slow and fast sigma band power of patients with RBD using frequency analysis. Methods Twenty patients who were diagnosed as RBD according to the ICSD-3 criteria and 20 age-matched controls who underwent polysomnography (PSG) for other sleep disorders (insomnia, snoring) and showed normal to mild obstructive sleep apnea (OSA). NREM sleep EEG data was extracted and N1 sleep data was excluded to minimize arousal artifact. Fast Fourier transform-based spectral power analysis was used to compute the power spectral densities of the EEG in the MATLAB environment. The sigma bands were divided into 2 discrete bands: slow sigma (11 to 13 Hz) and- fast sigma (13 to 15 Hz). Mann-Whitney U test by SPSS was used. Results RBD patients (61.9 ± 7.1 years old; 12 men) had a significantly lower sigma band power than the control group (61.5 ± 1.1 years old; 11 men) in central region (p = 0.028). Particularly, the slow sigma band power showed a bigger difference in all regions except O1 (F3 = 0.017, F4 = 0.027, C3 = 0.004, C4 = 0.009, O2 = 0.017). Conclusion Sigma power was lower in the RBD patients than in the control. It suggests that RBD has impaired cortical activity. Thus, decreased spindle activity during NREM sleep may be a potential biomarker of RBD. Support  


2021 ◽  
Vol 10 (23) ◽  
pp. 5585
Author(s):  
Gyeong Seon Choi ◽  
Ji Young Yun ◽  
Sungeun Hwang ◽  
Song E. Kim ◽  
Jeong-Yeon Kim ◽  
...  

REM sleep behavior disorder (RBD) could be a predictor of Parkinsonism even before development of typical motor symptoms. This study aims to characterize clinical features and corticomuscular and corticocortical coherence (CMC and CCC, respectively) during sleep in RBD patients with or without Parkinsonism. We enrolled a total of 105 subjects, including 20 controls, 54 iRBD, and 31 RBD+P patients, patients who were diagnosed as idiopathic RBD (iRBD) and RBD with Parkinsonism (RBD+P) in our neurology department. We analyzed muscle atonia index (MAI) and CMC between EEG and chin/limb muscle electromyography (EMG) and CCC during different sleep stages. Although differences in the CMC of iRBD group were observed only during REM sleep, MAI differences between groups were noted during both REM and NREM N2 stage sleep. During REM sleep, CMC was higher and MAI was reduced in iRBD patients compared to controls (p = 0.001, p < 0.001, respectively). Interestingly, MAI was more reduced in RBD+P compared to iRBD patients. In comparison, CCC was higher in iRBD patients compared to controls whereas CCC was lower in RBD+P groups compared to control and iRBD groups in various frequency bands during both NREM N2 and REM sleep stages. Among them, increased CMC during REM sleep revealed correlation between clinical severities of RBD symptoms. Our findings indicate that MAI, CMC, and CCC showed distinctive features in iRBD and RBD+P patients compared to controls, suggesting potential usefulness to understand possible links between these diseases.


2008 ◽  
Vol 66 (2b) ◽  
pp. 344-349 ◽  
Author(s):  
Paulo Sérgio A. Henriques-Filho ◽  
Riccardo Pratesi

BACKGROUND: Chiari malformations (CM) may result in the appearance of REM sleep behavior disorder (RBD) and sleep apnea syndrome (SAS) that can be considered markers of brain stem dysfunction. PURPOSE: To evaluate the frequency of RBD and SAS in patients with CM type I and II. METHOD: Were evaluated 103 patients with CM by means of full night polysomnography. Were scoring different sleep stages, frequency of abnormal movements (through video monitoring) and abnormal respiratory events. RESULTS: Of the 103 patients, 36 showed CM type I and 67 CM type II. Episodes of RBD were observed in 23 patients. Abnormal apnea-hypopnea index (AHI) was observed in 65 patients. CONCLUSION: The high rate of RBD suggests that this parassomnia and the increased frequency of central sleep apnea episodes, may be considered as a marker of progressive brain stem dysfunction.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Maria Livia Fantini ◽  
Giovanni Cossu ◽  
Andrea Molari ◽  
Monia Cabinio ◽  
Ozlem Uyanik ◽  
...  

Pantothenate kinase-associated neurodegeneration (PKAN) is a familial or sporadic disease characterized by extrapyramidal and corticospinal signs with dementia. Patients show iron accumulation in the basal ganglia, with neuronal loss and gliosis. A mutation of pantothenate kinase (PANK2) gene localized on chromosome 20p13 has been described in familiar forms, as well as in sporadic patients. We sought to assess sleep characteristics, including muscle activity during REM sleep, in three patients with PANK2 gene mutation-confirmed diagnosis of PKAN. Sleep architecture was altered in all patients with reduced total time of sleep in two and lack of SWS in one. No significant apnea/hypopnea were detected, and mild PLMS were observed in one patient (PLMS index:10.7/h). In contrast with other neurodegenerative diseases, no REM sleep abnormalities, especially REM sleep behavior disorder, were observed in PKAN patients, and percentage of both REM sleep atonia and phasic EMG activity were within normal ranges. Sleep studies may phenotypically differentiate PKAN from other neurodegenerative disorders.


2021 ◽  
Author(s):  
Milan Nigam ◽  
Ines Ayadi ◽  
Camille Noiray ◽  
Ana Catarina Branquino‐Bras ◽  
Erika Herraez Sanchez ◽  
...  

2021 ◽  
pp. 154596832110112
Author(s):  
Rebekah L. S. Summers ◽  
Miriam R. Rafferty ◽  
Michael J. Howell ◽  
Colum D. MacKinnon

Parkinson disease (PD) and other related diseases with α-synuclein pathology are associated with a long prodromal or preclinical stage of disease. Predictive models based on diagnosis of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) make it possible to identify people in the prodromal stage of synucleinopathy who have a high probability of future disease and provide an opportunity to implement neuroprotective therapies. However, rehabilitation providers may be unaware of iRBD and the motor abnormalities that indicate early motor system dysfunction related to α-synuclein pathology. Furthermore, there is no existing rehabilitation framework to guide early interventions for people with iRBD. The purpose of this work is to (1) review extrapyramidal signs of motor system dysfunction in people with iRBD and (2) propose a framework for early protective or preventive therapies in prodromal synucleinopathy using iRBD as a predictive marker. Longitudinal and cross-sectional studies indicate that the earliest emerging motor deficits in iRBD are bradykinesia, deficits performing activities of daily living, and abnormalities in speech, gait, and posture. These deficits may emerge up to 12 years before a diagnosis of synucleinopathy. The proposed rehabilitation framework for iRBD includes early exercise-based interventions of aerobic exercise, progressive resistance training, and multimodal exercise with rehabilitation consultations to address exercise prescription, progression, and monitoring. This rehabilitation framework may be used to implement neuroprotective, multidisciplinary, and proactive clinical care in people with a high likelihood of conversion to PD, dementia with Lewy bodies, or multiple systems atrophy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eun Jin Yoon ◽  
Oury Monchi

AbstractREM sleep behavior disorder (RBD) has a poor prognostic implication in both motor and non-motor functions in Parkinson’s disease (PD) patients. However, to the best of our knowledge no study to date investigated the longitudinal cerebral changes underlying RBD symptoms in PD. We performed the longitudinal study to investigate the association between probable RBD and cortical and subcortical changes in early, de novo PD patients. We studied 78 participants from the Parkinson’s Progression Marker Initiative who underwent structural MRI at baseline and after 2 years. The presence of probable RBD (pRBD) was evaluated using the RBD screening questionnaire. We compared the cross-sectional and longitudinal cortical thickness and subcortical volume changes, between PD patients with and without pRBD. At baseline, we found bilateral inferior temporal cortex thinning in the PD-pRBD group compared with the PD-noRBD group. Longitudinally, the PD-pRBD group revealed a significant increase in the rate of thinning in the left insula compared with the PD-noRBD group, and the increased thinning correlated with decreased cognitive performance. In subcortical volume analyses, the presence of pRBD was linked with volume decrease over time in the left caudate nucleus, pallidum and amygdala. The volume changes in the left caudate nucleus revealed correlations with global cognition. These results support the idea that RBD is an important marker of rapid progression in PD motor and non-motor symptoms and suggest that the atrophy in the left insula and caudate nucleus might be the underlying neurobiological mechanisms of the poorer prognosis in PD patients with RBD.


Sign in / Sign up

Export Citation Format

Share Document