size relationship
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 6)

H-INDEX

31
(FIVE YEARS 0)

Author(s):  
Katelyn Snyder ◽  
Stacey Drant ◽  
Elizabeth Carris ◽  
Adam Christopher ◽  
Vivek Allada


Author(s):  
Yiming Hu ◽  
Brett Scheffers ◽  
Xinyuan Pan ◽  
Huijian Hu ◽  
Zhixin Zhou ◽  
...  


2021 ◽  
Vol 154 (2) ◽  
pp. 173-182
Author(s):  
Pedro P. Garcillán ◽  
Carlos Martorell

Background and aims − Humans are increasingly introducing species to new regions. It is necessary to understand the processes that drive the expansion of non-native species into these new habitats across multiple spatiotemporal scales.Material and methods − We studied the spatial distribution of the non-native flora (39 species) of Guadalupe Island (246 km2) in the Mexican Pacific. We analyzed how residence time (time since first report in historical sources, 1875–2004) and species attributes (population density, flowering phenology, and individual height) are related with range sizes of non-native plants. To test whether the residence time – range size relationship of non-native plants can result from other factors besides time since their arrival, we compared it to the residence time – range size relationship of native plants. Range sizes were obtained using herbarium data and a systematic field sampling of 110 transects (50 × 2 m) throughout the entire island. We used beta regression to analyze the relationship of range sizes with residence time and species attributes.Key results − Range sizes of non-natives showed a positive relationship with residence time, flower phenology, and notably with plant density, but not with individual height. However, similar relationships were found for native species, casting doubts on whether our results reflect the range expansion rates of non-native species. Conclusions − Our results suggest that the production of large numbers of propagules, both as a result of long reproductive periods and large population sizes, determines to a large extent the rates of range size expansion of non-native species. However, the relationship we found between time since discovery and range size may arise from sampling biases, biological processes, or – most likely – both. This highlights the need for new approaches that allow us to discern the relative contributions of bias and process in our study of non-native species expansion.



2021 ◽  
Author(s):  
Vince Buffalo

AbstractUnder neutral theory, the level of polymorphism in an equilibrium population is expected to increase with population size. However, observed levels of diversity across metazoans vary only two orders of magnitude, while census population sizes (Nc) are expected to vary over several. This unexpectedly narrow range of diversity is a longstanding enigma in evolutionary genetics known as Lewontin’s Paradox of Variation (1974). Since Lewontin’s observation, it has been argued that selection constrains diversity across species, yet tests of this hypothesis seem to fall short of explaining the orders-of-magnitude reduction in diversity observed in nature. In this work, I revisit Lewontin’s Paradox and assess whether current models of linked selection are likely to constrain diversity to this extent. To quantify the discrepancy between pairwise diversity and census population sizes across species, I combine genetic data from 172 metazoan taxa with estimates of census sizes from geographic occurrence data and population densities estimated from body mass. Next, I fit the relationship between previously-published estimates of genomic diversity and these approximate census sizes to quantify Lewontin’s Paradox. While previous across-taxa population genetic studies have avoided accounting for phylogenetic non-independence, I use phylogenetic comparative methods to investigate the diversity census size relationship, estimate phylogenetic signal, and explore how diversity changes along the phylogeny. I consider whether the reduction in diversity predicted by models of recurrent hitch-hiking and background selection could explain the observed pattern of diversity across species. Since the impact of linked selection is mediated by recombination map length, I also investigate how map lengths vary with census sizes. I find species with large census sizes have shorter map lengths, leading these species to experience greater reductions in diversity due to linked selection. Even after using high estimates of the strength of sweeps and background selection, I find linked selection likely cannot explain the shortfall between predicted and observed diversity levels across metazoan species. Furthermore, the predicted diversity under linked selection does not fit the observed diversity–census-size relationship, implying that processes other than background selection and recurrent hitchhiking must be limiting diversity.



Author(s):  
Rachakonda Sreekar ◽  
Katerina Sam ◽  
Salindra K. Dayananda ◽  
Uromi Manage Goodale ◽  
Sarath W. Kotagama ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document