Reconstruction of the magnetic connection from Mercury to the solar corona, during events in the solar proton fluxes observed by MESSENGER

2021 ◽  
Author(s):  
Alessandro Ippolito ◽  
Christina Plainaki ◽  
Gaetano Zimbardo ◽  
Tommaso Alberti ◽  
Stefano Massetti ◽  
...  

<p>We present a study conducted on a number of selected events characterised by a significant increase in the solar proton fluxes measured by FIPS-MESSENGER during the period 2011-2013. For each of them, the magnetic connection between Mercury and the solar corona (Source Surface Field @2.5 R<sub>S</sub>) has been reconstructed, in order to identify the possible source of the accelerated particles on the solar surface. The transport of the magnetic field lines in the heliosphere is here evaluated with a Monte Carlo code that computes a random displacement at each step of the integration along the Parker magnetic field model. Such displacement is proportional to a “local” diffusion coefficient, which is a function of the fluctuation level and magnetic turbulence correlation lengths. The simulation is tailored to the specific events by using the observed values of solar wind velocity and magnetic fluctuation levels.</p>

2020 ◽  
Author(s):  
Alessandro Ippolito ◽  
Christina Plainaki ◽  
Gaetano Zimbardo ◽  
Stefano Massetti ◽  
Anna Milillo

<p>The magnetic foot point of Mercury on the solar disk has been reconstructed for selected case studies, in order to better understand the interaction between the solar corona and the planet. The transport of the magnetic field lines in the heliosphere is here evaluated with a Monte Carlo code that gives a random displacement at each step of the integration along the Parker magnetic field model. Such displacement is proportional to a “local” diffusion coefficient, which is a function of the fluctuation level and magnetic field correlation lengths. The simulation is tailored to specific events by using the observed values of solar wind velocity and magnetic fluctuation levels. Magnetic data from MAG/MESSENGER have been considered to compute the magnetic fluctuation level, while, concerning proton fluxes, FIPS/MESSENGER data has been taken into account. A number of SEP events observed on Mercury during 2011 and 2012 have been analysed, studying, for each event, the magnetic connection from Mercury to the solar corona, and the position of the active region possibly source of the accelerated particles observed.</p>


2009 ◽  
Vol 75 (2) ◽  
pp. 183-192 ◽  
Author(s):  
I. KOURAKIS ◽  
R. C. TAUTZ ◽  
A. SHALCHI

AbstractThe random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement 〈(Δx)2〉 is carried out, in terms of the position variable z. It is shown that 〈(Δx)2〉 varies as ~z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field-line random walk for isotropic turbulence.


1975 ◽  
Vol 196 ◽  
pp. L129 ◽  
Author(s):  
N. R., Jr. Sheeley ◽  
J. D. Bohlin ◽  
G. E. Brueckner ◽  
J. D. Purcell ◽  
V. E. Scherrer ◽  
...  

2006 ◽  
Vol 24 (1) ◽  
pp. 339-354 ◽  
Author(s):  
M. Longmore ◽  
S. J. Schwartz ◽  
E. A. Lucek

Abstract. Orientations of the observed magnetic field in Earth's dayside magnetosheath are compared with the predicted field line-draping pattern from the Kobel and Flückiger static magnetic field model. A rotation of the overall magnetosheath draping pattern with respect to the model prediction is observed. For an earthward Parker spiral, the sense of the rotation is typically clockwise for northward IMF and anticlockwise for southward IMF. The rotation is consistent with an interpretation which considers the twisting of the magnetic field lines by the bulk plasma flow in the magnetosheath. Histogram distributions describing the differences between the observed and model magnetic field clock angles in the magnetosheath confirm the existence and sense of the rotation. A statistically significant mean value of the IMF rotation in the range 5°-30° is observed in all regions of the magnetosheath, for all IMF directions, although the associated standard deviation implies large uncertainty in the determination of an accurate value for the rotation. We discuss the role of field-flow coupling effects and dayside merging on field line draping in the magnetosheath in view of the evidence presented here and that which has previously been reported by Kaymaz et al. (1992).


2020 ◽  
Author(s):  
Kalevi Mursula ◽  
Ilpo Virtanen ◽  
Jennimari Koskela ◽  
Ismo Tähtinen

<p>Several studies have noted on changes in the properties of sunspots, and in the mutual relations between various global parameters of solar magnetic activity (e.g. UV/EUV irradiance, radio and IR emissions, TSI/SSI), as well as between solar and ionospheric parameters since the onset of solar cycle 23. These changes have been suggested to be related to the overall reduction of solar activity at the aftermath of the decline of the Grand modern maximum of solar activity that prevailed during most of the 20th century. We have recently derived the longest record of coronal magnetic field intensities since 1968 using Mount Wilson Observatory and Wilcox Solar Observatory observations of the photospheric magnetic field and the PFSS model, and compared it with the heliospheric magnetic field observed at the Earth. We found that the time evolution of the coronal magnetic field during the last 50 years agrees with the heliospheric magnetic field only if the effective coronal size, the distance of the coronal source surface of the heliospheric magnetic field, is allowed to change in time. We calculated the optimum distance for each solar rotation and found that it experienced an abrupt decrease in the late 1990s. The effective volume of the solar corona shrunk to less than one half of its previous value during a short period of only a few years. This shrinking was related with a systematic change in the structure of the coronal magnetic field during the same time interval. We review these dramatic changes in the solar corona and discuss their possible connection to the changes in the different solar activity parameters and the reduction of the overall solar activity.</p>


Solar Physics ◽  
1978 ◽  
Vol 60 (1) ◽  
pp. 83-104 ◽  
Author(s):  
Michael Schulz ◽  
Edward N. Frazier ◽  
Donald J. Boucher

2021 ◽  
Vol 923 (1) ◽  
pp. 57
Author(s):  
Oliver E. K. Rice ◽  
Anthony R. Yeates

Abstract Given a known radial magnetic field distribution on the Sun’s photospheric surface, there exist well-established methods for computing a potential magnetic field in the corona above. Such potential fields are routinely used as input to solar wind models, and to initialize magneto-frictional or full magnetohydrodynamic simulations of the coronal and heliospheric magnetic fields. We describe an improved magnetic field model that calculates a magneto-frictional equilibrium with an imposed solar wind profile (which can be Parker’s solar wind solution, or any reasonable equivalent). These “outflow fields” appear to approximate the real coronal magnetic field more closely than a potential field, take a similar time to compute, and avoid the need to impose an artificial source surface. Thus they provide a practical alternative to the potential field model for initializing time-evolving simulations or modeling the heliospheric magnetic field. We give an open-source Python implementation in spherical coordinates and apply the model to data from solar cycle 24. The outflow tends to increase the open magnetic flux compared to the potential field model, reducing the well-known discrepancy with in situ observations.


2014 ◽  
Vol 32 (6) ◽  
pp. 689-704 ◽  
Author(s):  
E. S. Belenkaya ◽  
S. W. H. Cowley ◽  
C. J. Meredith ◽  
J. D. Nichols ◽  
V. V. Kalegaev ◽  
...  

Abstract. A unique set of images of Saturn's northern polar UV aurora was obtained by the Hubble Space Telescope in 2011 and 2012 at times when the Cassini spacecraft was located in the solar wind just upstream of Saturn's bow shock. This rare situation provides an opportunity to use the Kronian paraboloid magnetic field model to examine source locations of the bright auroral features by mapping them along field lines into the magnetosphere, taking account of the interplanetary magnetic field (IMF) measured near simultaneously by Cassini. It is found that the persistent dawn arc maps to closed field lines in the dawn to noon sector, with an equatorward edge generally located in the inner part of the ring current, typically at ~ 7 Saturn radii (RS) near dawn, and a poleward edge that maps variously between the centre of the ring current and beyond its outer edge at ~ 15 RS, depending on the latitudinal width of the arc. This location, together with a lack of response in properties to the concurrent IMF, suggests a principal connection with ring-current and nightside processes. The higher-latitude patchy auroras observed intermittently near to noon and at later local times extending towards dusk are instead found to straddle the model open–closed field boundary, thus mapping along field lines to the dayside outer magnetosphere and magnetopause. These emissions, which occur preferentially for northward IMF directions, are thus likely associated with reconnection and open-flux production at the magnetopause. One image for southward IMF also exhibits a prominent patch of very high latitude emissions extending poleward of patchy dawn arc emissions in the pre-noon sector. This is found to lie centrally within the region of open model field lines, suggesting an origin in the current system associated with lobe reconnection, similar to that observed in the terrestrial magnetosphere for northward IMF.


2005 ◽  
Vol 23 (10) ◽  
pp. 3389-3398 ◽  
Author(s):  
D. C. Delcourt ◽  
K. Seki ◽  
N. Terada ◽  
Y. Miyoshi

Abstract. We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds) of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV) electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above) do not behave adiabatically and possibly experience meandering (Speiser-type) motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds) precipitation of energetic (several keVs) electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.


2016 ◽  
Vol 12 (S328) ◽  
pp. 159-161
Author(s):  
J. M. Rodríguez Gómez ◽  
L. E. Antunes Vieira ◽  
A. Dal Lago ◽  
J. Palacios ◽  
L. A. Balmaceda ◽  
...  

AbstractThe density and temperature profiles in the solar corona are complex to describe, the observational diagnostics is not easy. Here we present a physics-based model to reconstruct the evolution of the electron density and temperature in the solar corona based on the configuration of the magnetic field imprinted on the solar surface. The structure of the coronal magnetic field is estimated from Potential Field Source Surface (PFSS) based on magnetic field from both observational synoptic charts and a magnetic flux transport model. We use an emission model based on the ionization equilibrium and coronal abundances from CHIANTI atomic database 8.0. The preliminary results are discussed in details.


Sign in / Sign up

Export Citation Format

Share Document