clustered network
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 27 (1) ◽  
pp. 1-31
Author(s):  
Sri Harsha Gade ◽  
Sujay Deb

Cache coherence ensures correctness of cached data in multi-core processors. Traditional implementations of existing protocols make them unscalable for many core architectures. While snoopy coherence requires unscalable ordered networks, directory coherence is weighed down by high area and energy overheads. In this work, we propose Wireless-enabled Share-aware Hybrid (WiSH) to provide scalable coherence in many core processors. WiSH implements a novel Snoopy over Directory protocol using on-chip wireless links and hierarchical, clustered Network-on-Chip to achieve low-overhead and highly efficient coherence. A local directory protocol maintains coherence within a cluster of cores, while coherence among such clusters is achieved through global snoopy protocol. The ordered network for global snooping is provided through low-latency and low-energy broadcast wireless links. The overheads are further reduced through share-aware cache segmentation to eliminate coherence for private blocks. Evaluations show that WiSH reduces traffic by and runtime by , while requiring smaller storage and lower energy as compared to existing hierarchical and hybrid coherence protocols. Owing to its modularity, WiSH provides highly efficient and scalable coherence for many core processors.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yue Zhao

Based on the principle of cluster wireless sensor network, this article introduces typical routing protocols in wireless sensors, and wireless sensor network protocol in detail analyzes their advantages and disadvantages and addresses their shortcomings. First, in the clustering network, a uniform clustering protocol with multiple hops in the circular network is proposed. The circular network is divided into rings of equal width, and clusters of equal size are set on different rings. Secondly, the ordinary nodes on each layer of the ring send the collected data to the auxiliary intelligent nodes in the cluster in a single-hop manner, and the auxiliary intelligent nodes located on the outer ring transfer the data to the auxiliary intelligent nodes located on the adjacent inner ring. Finally, on the basis of studying the clustering network protocol, this paper proposes a new clustering routing algorithm, a multihop adaptive clustering routing algorithm. The simulation results show that the algorithm can effectively extend the life of the network, save network energy consumption, and achieve network load balance. At the same time, the initial energy of the auxiliary intelligent node is set according to the energy consumption of the ordinary node and the relative distance between the auxiliary intelligent node and the base station on each layer of the ring. The theoretical and simulation results prove that, compared with the clustered network and auxiliary intelligent nodes, the clustered network can extend the life of the network.


2021 ◽  
Vol 10 (12) ◽  
pp. 448
Author(s):  
Amila Jayasinghe ◽  
Lindamullage Don Charls Hasintha Nawod Kalpana ◽  
Charithmali Chethika Abenayake ◽  
Pelpola Kankanamge Seneviratne Mahanama

During the last two decades, determining the urban boundaries of cities has become one of the major concerns in the urban and regional planning subject domains. Many scholars have tried to model the change of urban boundaries as it helps with sustainable development, population projections and social policy making, but such efforts have been futile, owing to the complex nature of urbanization and the theoretical and technical limitations of the proposed applications. Hence, many countries continue to rely on the administrative boundary demarcation, which rarely represent the actual urbanizing pattern. In such context, this study utilized the “Intersection-Based Clustered Network Model—(iCN Model)” to determine the urban boundaries of cities and selected Sri Lanka as the study area and considered few cities to test the model empirically, with satellite imagery classified urban boundaries. The findings of the study depict that the iCN Model is capable of capturing the complex and dynamic socioeconomic interdependencies of cities via the transportation network configurations. Therefore, the proposed approach is an excellent proxy to derive the urban boundaries of cities, which correspond with the same, derived by the satellite imageries. The proposed model is entirely based on open-source GIS applications and is free to implement and modify using the methods described in this paper.


2021 ◽  
Author(s):  
T S Bhagavath Singh ◽  
S Chitra

Abstract With the exponential increase of the internet’s user base, performance enhancing network architectures and algorithms has manifested themselves as a requisite. Algorithms for Prefetching and Caching of Web Objects have been observed to effectively minimize user perceived latency. These algorithms are made use of in architectures limited to a particular user. We can further improve the performance of these algorithms by making use of techniques like data mining. We propose an innovative idea of implementing Prefetching and Caching algorithms in a Clustered Network. This will enable all users in a particular cluster to make use of pre-fetched and cached web objects from all other users. The result of simulations indicates a reduction in web latency, internet traffic, and bandwidth consumed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Philipp Weidel ◽  
Renato Duarte ◽  
Abigail Morrison

Reinforcement learning is a paradigm that can account for how organisms learn to adapt their behavior in complex environments with sparse rewards. To partition an environment into discrete states, implementations in spiking neuronal networks typically rely on input architectures involving place cells or receptive fields specified ad hoc by the researcher. This is problematic as a model for how an organism can learn appropriate behavioral sequences in unknown environments, as it fails to account for the unsupervised and self-organized nature of the required representations. Additionally, this approach presupposes knowledge on the part of the researcher on how the environment should be partitioned and represented and scales poorly with the size or complexity of the environment. To address these issues and gain insights into how the brain generates its own task-relevant mappings, we propose a learning architecture that combines unsupervised learning on the input projections with biologically motivated clustered connectivity within the representation layer. This combination allows input features to be mapped to clusters; thus the network self-organizes to produce clearly distinguishable activity patterns that can serve as the basis for reinforcement learning on the output projections. On the basis of the MNIST and Mountain Car tasks, we show that our proposed model performs better than either a comparable unclustered network or a clustered network with static input projections. We conclude that the combination of unsupervised learning and clustered connectivity provides a generic representational substrate suitable for further computation.


2020 ◽  
Vol 7 (4) ◽  
pp. 1736-1745
Author(s):  
Muhammad Umar B. Niazi ◽  
Carlos Canudas-de-Wit ◽  
Alain Y. Kibangou

2020 ◽  
Vol 9 (7) ◽  
pp. 458 ◽  
Author(s):  
Rafael M. Navarro Cerrillo ◽  
Guillermo Palacios Rodríguez ◽  
Inmaculada Clavero Rumbao ◽  
Miguel Ángel Lara ◽  
Francisco Javier Bonet ◽  
...  

The effective and efficient planning of rural land-use changes and their impact on the environment is critical for land-use managers. Many land-use growth models have been proposed for forecasting growth patterns in the last few years. In this work; a cellular automata (CA)-based land-use model (Metronamica) was tested to simulate (1999–2007) and predict (2007–2035) land-use dynamics and land-use changes in Andalucía (Spain). The model was calibrated using temporal changes in land-use covers and was evaluated by the Kappa index. GIS-based maps were generated to study major rural land-use changes (agriculture and forests). The change matrix for 1999–2007 showed an overall area change of 674971 ha. The dominant land uses in 2007 were shrubs (30.7%), woody crops on dry land (17.3%), and herbaceous crops on dry land (12.7%). The comparison between the reference and the simulated land-use maps of 2007 showed a Kappa index of 0.91. The land-cover map for the projected PRELUDE scenarios provided the land-cover characteristics of 2035 in Andalusia; developed within the Metronamica model scenarios (Great Escape; Evolved Society; Clustered Network; Lettuce Surprise U; and Big Crisis). The greatest differences were found between Great Escape and Clustered Network and Lettuce Surprise U. The observed trend (1999–2007–2035) showed the greatest similarity with the Big Crisis scenario. Land-use projections facilitate the understanding of the future dynamics of land-use change in rural areas; and hence the development of more appropriate plans and policies


2020 ◽  
Author(s):  
Philipp Weidel ◽  
Renato Duarte ◽  
Abigail Morrison

ABSTRACTReinforcement learning is a learning paradigm that can account for how organisms learn to adapt their behavior in complex environments with sparse rewards. However, implementations in spiking neuronal networks typically rely on input architectures involving place cells or receptive fields. This is problematic, as such approaches either scale badly as the environment grows in size or complexity, or presuppose knowledge on how the environment should be partitioned. Here, we propose a learning architecture that combines unsupervised learning on the input projections with clustered connectivity within the representation layer. This combination allows input features to be mapped to clusters; thus the network self-organizes to produce task-relevant activity patterns that can serve as the basis for reinforcement learning on the output projections. On the basis of the MNIST and Mountain Car tasks, we show that our proposed model performs better than either a comparable unclustered network or a clustered network with static input projections. We conclude that the combination of unsupervised learning and clustered connectivity provides a generic representational substrate suitable for further computation.


Sign in / Sign up

Export Citation Format

Share Document