mean lifetimes
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 2)

H-INDEX

15
(FIVE YEARS 0)

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1014
Author(s):  
Pavithra Rangani Wijenayake ◽  
Takuya Hiroshima

Scientifically sound methods are essential to estimate the survival of trees, as they can substantially support sustainable management of natural forest resources. Tree mortality assessments have mainly been based on forest inventories and are mostly limited to planted forests; few studies have conducted age-based survival analyses in natural forests. We performed survival analyses of individual tree populations in natural forest stands to evaluate differences in the survival of two coniferous species (Abies sachalinensis (F. Schmidt) Mast. and Picea jezoensis var. microsperma) and all broad-leaved species. We used tree rings and census data from four preserved permanent plots in pan-mixed and sub-boreal natural forests obtained over 30 years (1989–2019). All living trees (diameter at breast height ≥ 5 cm in 1989) were targeted to identify tree ages using a Resistograph. Periodical tree age data, for a 10-year age class, were obtained during three consecutive observation periods. Mortality and recruitment changes were recorded to analyze multi-temporal age distributions and mean lifetimes. Non-parametric survival analyses revealed a multi-modal age distribution and exponential shapes. There were no significant differences among survival probabilities of species in different periods, except for broad-leaved species, which had longer mean lifetimes in each period than coniferous species. The estimated practical mean lifetime and diameter at breast height values of each coniferous and broad-leaved tree can be applied as an early identification system for trees likely to die to facilitate the Stand-based Silvicultural Management System of the University of Tokyo Hokkaido Forest. However, the survival probabilities estimated in this study should be used carefully in long-term forest dynamic predictions because the analysis did not include the effects of catastrophic disturbances, which might significantly influence forests. The mortality patterns and survival probabilities reported in this study are valuable for understanding the stand dynamics of natural forests associated with the mortality of individual tree populations.


2014 ◽  
Vol 14 (8) ◽  
pp. 4313-4325 ◽  
Author(s):  
B. Croft ◽  
J. R. Pierce ◽  
R. V. Martin

Abstract. Aerosol removal processes control global aerosol abundance, but the rate of that removal remains uncertain. A recent study of aerosol-bound radionuclide measurements after the Fukushima Daiichi nuclear power plant accident documents 137Cs removal (e-folding) times of 10.0–13.9 days, suggesting that mean aerosol lifetimes in the range of 3–7 days in global models might be too short by a factor of two. In this study, we attribute this discrepancy to differences between the e-folding and mean aerosol lifetimes. We implement a simulation of 137Cs and 133Xe into the GEOS-Chem chemical transport model and examine the removal rates for the Fukushima case. We find a general consistency between modelled and measured e-folding times. The simulated 137Cs global burden e-folding time is about 14 days. However, the simulated mean lifetime of aerosol-bound 137Cs over a 6-month post-accident period is only 1.8 days. We find that the mean lifetime depends strongly on the removal rates in the first few days after emissions, before the aerosols leave the boundary layer and are transported to altitudes and latitudes where lifetimes with respect to wet removal are longer by a few orders of magnitude. We present sensitivity simulations that demonstrate the influence of differences in altitude and location of the radionuclides on the mean lifetime. Global mean lifetimes are shown to strongly depend on the altitude of injection. The global mean 137Cs lifetime is more than one order of magnitude greater for the injection at 7 km than into the boundary layer above the Fukushima site. Instantaneous removal rates are slower during the first few days after the emissions for a free tropospheric versus boundary layer injection and this strongly controls the mean lifetimes. Global mean aerosol lifetimes for the GEOS-Chem model are 3–6 days, which is longer than that for the 137Cs injected at the Fukushima site (likely due to precipitation shortly after Fukushima emissions), but similar to the mean lifetime of 3.9 days for the 137Cs emissions injected with a uniform spread through the model's Northern Hemisphere boundary layer. Simulated e-folding times were insensitive to emission parameters (altitude, location, and time), suggesting that these measurement-based e-folding times provide arobust constraint on simulated e-folding times. Despite the reasonable global mean agreement of GEOS-Chem with measurement e-folding times, site by site comparisons yield differences of up to a factor of two, which suggest possible deficiencies in either the model transport, removal processes or the representation of 137Cs removal, particularly in the tropics and at high latitudes. There is an ongoing need to develop constraints on aerosol lifetimes, but these measurement-based constraints must be carefully interpreted given the sensitivity of mean lifetimes and e-folding times to both mixing and removal processes.


2013 ◽  
Vol 13 (12) ◽  
pp. 32391-32421 ◽  
Author(s):  
B. Croft ◽  
J. R. Pierce ◽  
R. V. Martin

Abstract. Aerosol removal processes control global aerosol abundance, but the rate of that removal remains uncertain. A recent study of aerosol-bound radionuclide measurements after the Fukushima Dai-Ichi nuclear power plant accident documents 137Cs removal (e-folding) times of 10.0 to 13.9 days, suggesting that mean aerosol lifetimes in the range of 3–7 days in global models might be too short by a factor of two. In this study, we attribute this discrepancy to differences between the e-folding and mean aerosol lifetimes. We implement a~simulation of 137Cs and 133Xe into the GEOS-Chem chemical transport model and examine the removal rates for the Fukushima case. We find a~general consistency between modelled and measured e-folding times. The simulated 137Cs global burden e-folding time is about 14 days. However, the simulated mean lifetime of aerosol-bound 137Cs over a 6 month post-accident period is only 1.8 days. We find that the mean lifetime depends strongly on the removal rates in the first few days after emissions, before the aerosols leave the boundary layer and are transported to altitudes and latitudes where lifetimes with respect to wet removal are longer by a few orders of magnitude. We present sensitivity simulations that demonstrate the influence of differences in altitude and location of the radionuclides on the mean lifetime. Global mean lifetimes are shown to strongly depend on the altitude of injection. The global mean 137Cs lifetime is more than one order of magnitude greater for the injection at 7 km than into the boundary layer above the Fukushima site. Instantaneous removal rates are slower during the first few days after the emissions for a free tropospheric vs. boundary layer injection and this strongly controls the mean lifetimes. Global mean aerosol lifetimes for the GEOS-Chem model are 3–6 days, which is longer than for the 137Cs injected at the Fukushima site (likely due to precipitation shortly after Fukushima emissions), but about the same as the mean lifetime of 3.9 days for the 137Cs emissions injected with a uniform spread through the model's Northern Hemisphere boundary layer. Despite the reasonable global mean agreement of GEOS-Chem with measurement e-folding times, site by site comparisons yield differences of up to a factor of two, which suggest possible deficiencies in either the model transport, removal processes or the representation of 137Cs removal, particularly in the tropics and at high latitudes. There is an ongoing need to develop constraints on aerosol lifetimes, but these measurement-based constraints must be carefully interpreted given the sensitivity of mean and e-folding times to both mixing and removal processes.


2009 ◽  
Vol 83 (13) ◽  
pp. 2243-2248 ◽  
Author(s):  
V. E. Petrenko ◽  
M. L. Antipova
Keyword(s):  
The Mean ◽  

2008 ◽  
Vol 39 (3-4) ◽  
pp. 414-417
Author(s):  
X.A. Pichardo ◽  
V.M. González-Robles ◽  
S.J. Vlaev

2005 ◽  
Vol 2 (10) ◽  
pp. 3653-3656 ◽  
Author(s):  
S. J. Vlaev ◽  
V. M. González Robles

Sign in / Sign up

Export Citation Format

Share Document