A high-accuracy complex-phase method of simulating X-ray propagation through a multi-lens system

2016 ◽  
Vol 23 (6) ◽  
pp. 1305-1314 ◽  
Author(s):  
S. Kshevetskii ◽  
P. Wojda ◽  
V. Maximov

The propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied. The error of simulation is analytically estimated and investigated. It was found that a very detailed difference grid is required for reliable and accurate calculations of the propagation of X-ray waves through a multi-lens system. The reasons for using a very detailed difference grid are investigated. It was shown that the wave phase becomes a function, very quickly increasing with increasing distance from the optical axis, after the wave has passed through the multi-lens system. If the phase is a quickly increasing function of the coordinates perpendicular to the optical axis, then the electric field of the wave is a quickly oscillating function of these coordinates, and thus a very detailed difference grid becomes necessary to describe such a wavefield. To avoid this difficulty, an equation for the phase function is proposed as an alternative to the equation of the electric field. This allows reliable and accurate simulations to be carried out when using the multi-lens system. An equation for the phase function is derived and used for accurate simulations. The numerical error of the suggested method is estimated. It is shown that the equation for the phase function allows efficient simulations to be fulfilled for the multi-lens system.

Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


2018 ◽  
Vol 189 (02) ◽  
pp. 187-194 ◽  
Author(s):  
Nikita V. Marchenkov ◽  
Anton G. Kulikov ◽  
Ivan I. Atknin ◽  
Arsen A. Petrenko ◽  
Alexander E. Blagov ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Yuzhu Pan ◽  
Xin Wang ◽  
Jingda Zhao ◽  
Yubing Xu ◽  
Yuwei Li ◽  
...  

Perovskites single crystals (PSCs) could be used to made high performance photoelectric detectors due to its superior optoelectronic characteristics. Generally, external electric field need to be applied in the PSCs-based...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Alexandra Carvalho ◽  
Mariana C. F. Costa ◽  
Valeria S. Marangoni ◽  
Pei Rou Ng ◽  
Thi Le Hang Nguyen ◽  
...  

We show that the degree of oxidation of graphene oxide (GO) can be obtained by using a combination of state-of-the-art ab initio computational modeling and X-ray photoemission spectroscopy (XPS). We show that the shift of the XPS C1s peak relative to pristine graphene, ΔEC1s, can be described with high accuracy by ΔEC1s=A(cO−cl)2+E0, where c0 is the oxygen concentration, A=52.3 eV, cl=0.122, and E0=1.22 eV. Our results demonstrate a precise determination of the oxygen content of GO samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoya Shiode ◽  
Mototaka Kabashima ◽  
Yuta Hiasa ◽  
Kunihiro Oka ◽  
Tsuyoshi Murase ◽  
...  

AbstractThe purpose of the study was to develop a deep learning network for estimating and constructing highly accurate 3D bone models directly from actual X-ray images and to verify its accuracy. The data used were 173 computed tomography (CT) images and 105 actual X-ray images of a healthy wrist joint. To compensate for the small size of the dataset, digitally reconstructed radiography (DRR) images generated from CT were used as training data instead of actual X-ray images. The DRR-like images were generated from actual X-ray images in the test and adapted to the network, and high-accuracy estimation of a 3D bone model from a small data set was possible. The 3D shape of the radius and ulna were estimated from actual X-ray images with accuracies of 1.05 ± 0.36 and 1.45 ± 0.41 mm, respectively.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2949
Author(s):  
Marzieh Rabiei ◽  
Arvydas Palevicius ◽  
Amir Dashti ◽  
Sohrab Nasiri ◽  
Ahmad Monshi ◽  
...  

Taking into account X-ray diffraction, one of the well-known methods for calculating the stress-strain of crystals is Williamson-Hall (W–H). The W-H method has three models, namely (1) Uniform deformation model (UDM); (2) Uniform stress deformation model (USDM); and (3) Uniform deformation energy density model (UDEDM). The USDM and UDEDM models are directly related to the modulus of elasticity (E). Young’s modulus is a key parameter in engineering design and materials development. Young’s modulus is considered in USDM and UDEDM models, but in all previous studies, researchers used the average values of Young’s modulus or they calculated Young’s modulus only for a sharp peak of an XRD pattern or they extracted Young’s modulus from the literature. Therefore, these values are not representative of all peaks derived from X-ray diffraction; as a result, these values are not estimated with high accuracy. Nevertheless, in the current study, the W-H method is used considering the all diffracted planes of the unit cell and super cells (2 × 2 × 2) of Hydroxyapatite (HA), and a new method with the high accuracy of the W-H method in the USDM model is presented to calculate stress (σ) and strain (ε). The accounting for the planar density of atoms is the novelty of this work. Furthermore, the ultrasonic pulse-echo test is performed for the validation of the novelty assumptions.


2021 ◽  
Vol 87 (3) ◽  
Author(s):  
R. Nemati Siahmazgi ◽  
S. Jafari

The purpose of the present paper is to investigate the generation of soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. The electric field of the laser beam interacts with the nanocluster and leads to ionization of the cluster atoms, which then produces a nanoplasma. Because of the nonlinear restoring force in an anharmonic nanoplasma, the fluctuations and heating rate of, as well as the power radiated by, the electrons in the nanocluster plasma will be notably different from those arising from a linear restoring force. By comparing the nonlinear restoring force state (which arises from an anharmonic cluster) with that of the linear restoring force (in harmonic clusters), the cluster temperature specifically changes at the resonant frequency relative to the linear restoring force, while the variation of the anharmonic cluster radius is almost identical to that of the harmonic cluster radius. In addition, it is revealed that a sharp peak of X-ray emission arises after some picoseconds in deuterium, helium, neon and argon clusters.


1979 ◽  
Vol 30 (2) ◽  
pp. 219-223 ◽  
Author(s):  
S.G. Dinev ◽  
Ch.I. Radev ◽  
K.V. Stamenov ◽  
K.A. Stankov

Sign in / Sign up

Export Citation Format

Share Document