scholarly journals Explosive fragmentation of Prince Rupert’s drops leads to well-defined fragment sizes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Kooij ◽  
Gerard van Dalen ◽  
Jean-François Molinari ◽  
Daniel Bonn

AbstractAnyone who has ever broken a dish or a glass knows that the resulting fragments range from roughly the size of the object all the way down to indiscernibly small pieces: typical fragment size distributions of broken brittle materials follow a power law, and therefore lack a characteristic length scale. The origin of this power-law behavior is still unclear, especially why it is such an universal feature. Here we study the explosive fragmentation of glass Prince Rupert’s drops, and uncover a fundamentally different breakup mechanism. The Prince Rupert’s drops explode due to their large internal stresses resulting in an exponential fragment size distribution with a well-defined fragment size. We demonstrate that generically two distinct breakup processes exist, random and hierarchical, that allows us to fully explain why fragment size distributions are power-law in most cases but exponential in others. We show experimentally that one can even break the same material in different ways to obtain either random or hierarchical breakup, giving exponential and power-law distributed fragment sizes respectively. That a random breakup process leads to well-defined fragment sizes is surprising and is potentially useful to control fragmentation of brittle solids.

2014 ◽  
Vol 141 (5) ◽  
pp. 054307 ◽  
Author(s):  
D. B. Qian ◽  
X. Ma ◽  
Z. Chen ◽  
B. Li ◽  
D. C. Zhang ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Jan Åström ◽  
Sue Cook ◽  
Ellyn M. Enderlin ◽  
David A. Sutherland ◽  
Aleksandra Mazur ◽  
...  

Abstract Iceberg calving strongly controls glacier mass loss, but the fracture processes leading to iceberg formation are poorly understood due to the stochastic nature of calving. The size distributions of icebergs produced during the calving process can yield information on the processes driving calving and also affect the timing, magnitude, and spatial distribution of ocean fresh water fluxes near glaciers and ice sheets. In this study, we apply fragmentation theory to describe key calving behaviours, based on observational and modelling data from Greenland and Antarctica. In both regions, iceberg calving is dominated by elastic-brittle fracture processes, where distributions contain both exponential and power law components describing large-scale uncorrelated fracture and correlated branching fracture, respectively. Other size distributions can also be observed. For Antarctic icebergs, distributions change from elastic-brittle type during ‘stable’ calving to one dominated by grinding or crushing during ice shelf disintegration events. In Greenland, we find that iceberg fragment size distributions evolve from an initial elastic-brittle type distribution near the calving front, into a steeper grinding/crushing-type power law along-fjord. These results provide an entirely new framework for understanding controls on iceberg calving and how calving may react to climate forcing.


2005 ◽  
Vol 38 (7) ◽  
pp. 789-806 ◽  
Author(s):  
A Rentenier ◽  
P Moretto-Capelle ◽  
D Bordenave-Montesquieu ◽  
A Bordenave-Montesquieu

Fractals ◽  
2003 ◽  
Vol 11 (04) ◽  
pp. 369-376 ◽  
Author(s):  
HAJIME INAOKA ◽  
MAREKAZU OHNO

We conducted a set of experiments of impact fragmentation of samples with voids, such as pumice stones and bricks. We discovered that the fragment size distribution follows a power law, but that the exponent of the distribution is different from that of the distribution by the fragmentation of a space-filling sample like a gypsum ball. The value of the exponent is about 0.9. And the value seems universal for samples with voids.


2021 ◽  
pp. 104496
Author(s):  
Alison Ord ◽  
Thomas Blenkinsop ◽  
Bruce Hobbs

2019 ◽  
Vol 99 (1) ◽  
Author(s):  
Pavel S. Iliev ◽  
Falk K. Wittel ◽  
Hans J. Herrmann

1996 ◽  
Vol 458 ◽  
Author(s):  
G. Kendall ◽  
P. J. Cote ◽  
D. Crayon ◽  
F. J. Bonetto

ABSTRACTAcoustic emission (AE) events were recorded during the peeling of pressure-sensitive adhesive (PSA) tape from a silicate glass surface. The distributions of AE event durations and energies are found to have the form of power laws. Power-law dependencies (hyperbolic distributions) are recognized as a consequence of self-organized criticality (SOC), resulting from the absence of any characteristic length or time scales. In these studies, standard optical microscopy was used to characterize the fractal nature of the PSA-glass interface. The present results suggest that it is the inherent static structural features found at the fractal PSA-glass interface which produce the observed hyperbolic distributions in AE events, rather than a true SOC process.


Sign in / Sign up

Export Citation Format

Share Document