exact geometry
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
pp. 105566562110531
Author(s):  
Michael Rollins ◽  
Liran Oren

Introduction Transparent, patient-specific vocal tract replicas are helpful in research and educational endeavors but challenging to procure. An accessible method for fabricating these models, improving on previously suggested processes, would make them more widely available. Method Detailed instructions for fabricating a transparent, patient-specific vocal tract model were addressed. The broad steps were (1) digitally reconstructing (patient-specific) vocal tract geometry, (2) producing a vocal tract mold (using methods such as three-dimensional [3D] printing), and (3) casting transparent material (such as silicone) around the vocal tract mold and removing the mold. The cavities remaining within the cast represented the exact geometry of the vocal tract. Discussion A combination of 3D printing and silicone casting can produce useful vocal tract replicas. Several simple changes to previous methods can improve consistency and reduce the labor and cost of production. Limitations and potential modifications to expand the applications of this method are discussed.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 968
Author(s):  
Christoph Haas ◽  
Marie-Gabrielle Macherhammer ◽  
Nejc Klopcic ◽  
Alexander Trattner

In this work, single-phase (liquid water) and two-phase (liquid water and gaseous oxygen) 3D-CFD flow analysis of the anode of a high pressure PEM electrolysis cell was conducted. 3D-CFD simulation models of the anode side porous transport layer of a PEM electrolyzer cell were created for the flow analysis. For the geometrical modelling of the PTL, two approaches were used: (a) modelling the exact geometry and (b) modelling a simplified geometry using a porosity model. Before conducting two-phase simulations, the model was validated using a single-phase approach. The Eulerian multiphase and the volume-of-fluid approaches were used for the two-phase modelling and the results were compared. Furthermore, a small section of the PTL was isolated to focus on the gas bubble flow and behaviour in more detail. The results showed plausible tendencies regarding pressure drop, velocity distribution and gas volume fraction distribution. The simplified geometry using the porous model could adequately replicate the results of the exact geometry model with a significant reduction in simulation time. The developed simulation model can be used for further investigations and gives insight into two-phase flow phenomena in the PTL. Additionally, the information obtained from simulation can aid the design and evaluation of new PTL structures.


2019 ◽  
Vol 31 (1) ◽  
pp. 53-70
Author(s):  
GM Kulikov ◽  
SV Plotnikova ◽  
E Carrera

An exact geometry four-node piezoelectric solid-shell element through the sampling surfaces formulation is proposed. The sampling surfaces formulation is based on choosing inside the shell N – 2 sampling surfaces parallel to the middle surface and located at Chebyshev polynomial nodes to introduce the displacements and electric potentials of these surfaces as fundamental shell unknowns. The bottom and top surfaces are also included into a set of sampling surfaces. Such choice of unknowns with the use of Lagrange polynomials of degree N – 1 in the through-the-thickness interpolations of displacements, strains, electric potential, and electric field yields a robust piezoelectric shell formulation. To implement efficient analytical integration throughout the solid-shell element, the extended assumed natural strain method is employed. The developed hybrid-mixed four-node piezoelectric solid-shell element is based on the Hu-Washizu variational principle and shows the excellent performance for coarse mesh configurations. It can be useful for the 3D stress analysis of piezoelectric shells with variable curvatures, in particular for the modeling and analysis of spiral actuators.


Author(s):  
Nguyen Van Chung

This paper presents an efficient and accurate numerical technique based upon the scaled boundary finite element method for the analysis of two-dimensional, linear, second-order, boundary value problems with the domain completely described by a circular defining curve. The scaled boundary finite element formulation is established in a general framework allowing single-field and multi-field problems, bounded and unbounded bodies, distributed body source, and general boundary conditions to be treated in a unified fashion. The conventional polar coordinates together with a properly selected scaling center are utilized to achieve the exact description of the circular defining curve, exact geometry of the domain, and exact spatial differential operators. The computational performance of the implemented procedure is then fully investigated for various scenarios within the context of geo-mechanics applications. Keywords: exact geometry; geo-mechanics; multi-field problems; SBFEM; scaled boundary coordinates.


Sign in / Sign up

Export Citation Format

Share Document