scholarly journals An Analytical Energy Harvester Model for Interdigitated Ring Electrode on Circular Elastic Membrane

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 133
Author(s):  
Hua-Ju Shih ◽  
Kuo-Ching Chen

Energy harvesters are devices that accumulate ambient vibrational energy from the environment, and for the time being, variable capacitance is the most widely used mechanism. Various designs were proposed to increase the power of such devices, and in particular, the interdigitated electrode (IDE) pattern is the mainstream. Nevertheless, most IDE designs focus merely on the parallel-type vibrations of electrodes. In this study, the performance of a novel harvester, which combined circular membrane and interdigitated ring electrodes (IRE), was investigated. This design allows the device to collect energy from the rotational structure motions of electrodes through the vibrating membrane. Besides, the circular structure provides a dense capacitive arrangement that is higher than that of the arrangement obtained using regular rectangular chips. The IRE diagram is composed of many capacitive rings, each of which harvests vibrated energy simultaneously. Three gaps (1, 10, and 100 μm) of the ring are investigated for the first four vibrational modes of the membrane to understand the effect of energy output. It is found that the energy outputs are approximately the same for the three gaps; however, rings with a wider gap are easier to manufacture in MEMS.

2022 ◽  
Author(s):  
Seyed Hossein Daneshvar ◽  
Mehmet Rasit Yuce ◽  
Jean-Michel Redouté

2012 ◽  
Vol 47 ◽  
pp. 1041-1044 ◽  
Author(s):  
P. Janphuang ◽  
R. Lockhart ◽  
D. Briand ◽  
N.F. de Rooij

2019 ◽  
Vol 96 (2) ◽  
pp. 1283-1301 ◽  
Author(s):  
Mickaël Lallart ◽  
Shengxi Zhou ◽  
Linjuan Yan ◽  
Zhichun Yang ◽  
Yu Chen

2020 ◽  
Vol 139 ◽  
pp. 106642
Author(s):  
Ulrike Nabholz ◽  
Lukas Lamprecht ◽  
Jan E. Mehner ◽  
André Zimmermann ◽  
Peter Degenfeld-Schonburg

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1072
Author(s):  
Xi Zuo ◽  
Li Chen ◽  
Wenjun Pan ◽  
Xingchen Ma ◽  
Tongqing Yang ◽  
...  

Fluorinated polyethylene propylene (FEP) bipolar ferroelectret films with a specifically designed concentric tunnel structure were prepared by means of rigid-template based thermoplastic molding and contact polarization. The properties of the fabricated films, including the piezoelectric response, mechanical property, and thermal stability, were characterized, and two kinds of energy harvesters based on such ferroelectret films, working in 33- and 31-modes respectively, were investigated. The results show that the FEP films exhibit significant longitudinal and radial piezoelectric activities, as well as superior thermal stability. A quasi-static piezoelectric d33 coefficient of up to 5300 pC/N was achieved for the FEP films, and a radial piezoelectric sensitivity of 40,000 pC/N was obtained in a circular film sample with a diameter of 30 mm. Such films were thermally stable at 120 °C after a reduction of 35%. Two types of vibrational energy harvesters working in 33-mode and 31-mode were subsequently designed. The results show that a power output of up to 1 mW was achieved in an energy harvester working in 33-mode at a resonance frequency of 210 Hz, referring to a seismic mass of 33.4 g and an acceleration of 1 g (g is the gravity of the earth). For a device working in 31-mode, a power output of 15 μW was obtained at a relatively low resonance frequency of 26 Hz and a light seismic mass of 1.9 g. Therefore, such concentric tunnel FEP ferroelectric films provide flexible options for designing vibrational energy harvesters working either in 33-mode or 31-mode to adapt to application environments.


2020 ◽  
Vol 87 (9) ◽  
Author(s):  
Zhaoqi Li ◽  
Qian Deng ◽  
Shengping Shen

Abstract In this work, we propose a circular membrane-based flexoelectric energy harvester. Different from previously reported nanobeams based flexoelectric energy harvesters, for the flexoelectric membrane, the polarization direction around its center is opposite in sign to that far away from the center. To avoid the cancelation of the electric output, electrodes coated to upper and lower surfaces of the flexoelectric membrane are respectively divided into two parts according to the sign of bending curvatures. Based on Hamilton’s principle and Ohm’s law, we obtain governing equations for the circular membrane-based flexoelectric energy harvester. A generalized assumed-modes method is employed for solving the system, so that the performance of the flexoelectric energy harvester can be studied in detail. We analyze the effects of the thickness h, radius r0, and their ratio on the energy harvesting performance. Specifically, we show that, by selecting appropriate h and r0, it is possible to design an energy harvester with both high energy conversion efficiency and low working frequency. At last, through numerical simulations, we further study the optimization ratio for which the electrodes should be divided.


2017 ◽  
Vol 84 (12) ◽  
Author(s):  
Jung-San Chen ◽  
I-Ting Chien

Flexural propagation behavior of a metamaterial beam with circular membrane-mass structures is presented. Each cell is comprised of a base structure containing circular cavities filled by an elastic membrane with a centrally loaded mass. Numerical results show that there exist two kinds of bandgaps in such a system. One is called Bragg bandgap caused by structural periodicity; the other is called locally resonant (LR) bandgap caused by the resonant behavior of substructures. By altering the properties of the membrane-mass structure, the location of the resonant-type bandgap can be easily tuned. An analytical model is proposed to predict the lowest bandgap location. A good agreement is seen between the theoretical results and finite element (FE) results. Frequencies with negative mass density lie in the resonant-type bandgap.


Author(s):  
M. Amin Karami ◽  
Daniel J. Inman

A nonlinear electromagnetic energy harvester is presented which can generate power from translational vibrations in two directions and rotational excitations. Commonly, vibrational energy harvesters are designed to generate power from only translational ambient oscillations in a specific direction. The assumption of uni-axial ambient vibrations is too idealistic. Not only the direction of the base excitations typically change in time but also the rotational excitations are as common in oscillating machinery as the translational vibrations. The proposed energy harvester is inspired by the Automatic Generating System in Seiko watches. The moving element is a magnetic pendulum. When the pendulum moves in response to the base excitations the magnetic tip passes over electromagnetic coils, positioned in a circular array in the stator. The relative motion of the tip magnet and the coil generates electricity. The paper presents an analytical representative model for the energy harvesting system. The dynamics and energy generation of the energy harvester in response to four different excitation configurations are studied. It is demonstrated that in response to large excitations the system commonly undergoes period doubling bifurcations and occasionally undergoes chaos. The study paves the way to optimal design of the hybrid rotary translational energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document