molecular diodes
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Ryan P. Sullivan ◽  
Oana D. Jurchescu ◽  
Mark E. Welker ◽  
John T. Morningstar

Author(s):  
Гасан Абакарович Мустафаев ◽  
Арслан Гасанович Мустафаев ◽  
Валерий Александрович Панченко ◽  
Наталья Васильевна Черкесова

Большое энергопотребление изделий интегральной электроники и дорогостоящие методы их производства, делает масштабирование кремниевых полупроводниковых устройств до размеров менее 50 нм непростой технологической и конструкторской задачей. В последнее время были достигнуты значительные успехи в разработке и исследовании изделий молекулярной электроники: молекулярных проводов, молекулярных диодов, изготовленных из отдельных молекул. Также были получены хорошие результаты в технологии формирования надежного электрического контакта с электропроводящими молекулами. Достижения в области наноэлектроники делают возможным разработку более сложных молекулярных электронных структур, например, цифровых логических схем. В данной работе проведено квантовохимическое моделирование молекулы, выполняющей функцию логического элемента, выполнена оптимизация равновесной пространственной конфигурации молекулы, разработана конструкция и синтезирована топология слоев для изготовления подложки для монтажа молекулы и создания внешних интерфейсов. Полученные результаты демонстрируют перспективность органической электроники как альтернативы кремниевым полупроводниковым материалам при разработке интегральных схем. The high energy consumption of integrated electronics products and expensive methods of their production makes scaling silicon semiconductor devices to sizes less than 50 nm a difficult technological and design task. Recently, significant advances have been made in the development and research of molecular electronics products: molecular wires, molecular diodes made from individual molecules. Good results also obtained in the technology of forming a reliable electrical contact with electrically conductive molecules. Advances in nanoelectronics make it possible to develop more complex molecular electronic structures such as digital logic circuits. In this work, a quantum-chemical simulation of a molecule performing the function of a logical element is carried out, the equilibrium spatial configuration of the molecule is optimized, the design is developed and the topology of the layers for fabricating a substrate for mounting a molecule and creating external interfaces is developed. The obtained results demonstrate the promise of organic electronics as an alternative to silicon semiconductor materials in the development of integrated circuits.


2020 ◽  
Author(s):  
Sihai Luo ◽  
Andrea Mancini ◽  
Rodrigo Berté ◽  
Bård H. Hoff ◽  
Stefan A. Maier ◽  
...  

Metallic nanogaps are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. Here, we report a patterning technique based on molecular self-assembly and physical peeling that allows the gap-width to be tuned over the range 3 – 30 nm and enables the fabrication of massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps (RSNs). The method is used here to prepare molecular diodes across sub-3-nm metallic nanogaps and to fabricate visible-light-active plasmonic substrates based on large-area, gold-based RSN arrays. The substrates are applicable to a broad range of optical applications, and are used here as substrates for surface-enhanced Raman spectroscopy (SERS), providing high enhancement factors of up to 3e8 relative to similar, gap-free thin gold films.


2020 ◽  
Author(s):  
Sihai Luo ◽  
Andrea Mancini ◽  
Rodrigo Berté ◽  
Bård H. Hoff ◽  
Stefan A. Maier ◽  
...  

Metallic nanogaps are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. Here, we report a patterning technique based on molecular self-assembly and physical peeling that allows the gap-width to be tuned over the range 3 – 30 nm and enables the fabrication of massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps (RSNs). The method is used here to prepare molecular diodes across sub-3-nm metallic nanogaps and to fabricate visible-light-active plasmonic substrates based on large-area, gold-based RSN arrays. The substrates are applicable to a broad range of optical applications, and are used here as substrates for surface-enhanced Raman spectroscopy (SERS), providing high enhancement factors of up to 3e8 relative to similar, gap-free thin gold films.


Author(s):  
Ryan P. Sullivan ◽  
Mark E. Welker ◽  
Surya R. Banks ◽  
Oana D. Jurchescu

MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3185-3194
Author(s):  
Vikas Jangid ◽  
Damien Brunel ◽  
Chrystelle Lebouin ◽  
Clement A. Reynaud ◽  
Esteban Sanchez-Adaime ◽  
...  

AbstractBailey [1] proposed in 1972 that a nanoscale antenna coupled with a rectifier can harvest broad range electromagnetic radiation from visible to infrared. To incorporate this concept in practical systems, there were two main technological bottle necks that have to be overcome: antenna miniaturization and rectification in terahertz frequency. With current technology and equipment [2], we are proposing a third-generation rectenna-based solar cells composed of Ag nanocubes to harvest ambient visible and infrared electromagnetic waves coupled to ferrocene-based molecular diodes [3] capable of switching at terahertz frequency to convert this received energy into DC power. The function of these molecular diodes is two-fold: they rectify and provide an uniform nano-cavity between silver top electrode and gold bottom electrode. These nano-cavities are capable to support gap plasmon modes and absorption of light in both narrow and broad range, depending on the nanocube size and dispersion. A self-assembled monolayer (SAM) of ferrocene alkane-dithiol is deposited in this nano-cavity making it possible to form molecular sized nano-gaps well below the usual 3 nm, and this structure is robust and reproducible [4]. This SAM can be deposited directly or via a two-step click chemistry on the surface to have along with control over the orientation of the molecule. By tuning the orientation and position of the ferrocene moiety, the direction of rectification can be controlled [3]. Hence, the SAM does not only act as a rectifier but also provides mechanical support combining photonic and electrical properties. This paper focuses on studying the electrical and supramolecular structure of these molecular diode based SAMs.


Nanoscale ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 10001-10009 ◽  
Author(s):  
Carolina Sergi Lopes ◽  
Leandro Merces ◽  
Rafael Furlan de Oliveira ◽  
Davi Henrique Starnini de Camargo ◽  
Carlos César Bof Bufon

Ensemble molecular diodes employing carbon-based nanomaterials reveal a controllable current rectification ratio and rectification direction inversion, both driven by temperature.


2019 ◽  
Vol 141 (50) ◽  
pp. 19644-19654 ◽  
Author(s):  
Adam Jaroš ◽  
Esmaeil Farajpour Bonab ◽  
Michal Straka ◽  
Cina Foroutan-Nejad

Sign in / Sign up

Export Citation Format

Share Document