frontal impacts
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Prabhaharan S. A. ◽  
G. Balaji ◽  
Krishnamoorthy Annamalai

Automotive manufacturers rely on rigorous testing and simulations to construct their vehicles durable and safe in all aspects. One such vital factor is crash safety, otherwise known as crashworthiness. Crash tests are conventional forms of non-destructive methods to validate the vehicle for its crashworthiness and compatibility based on different operating conditions. The frontal impact test is the most primary form of crash test, which focuses on improving passenger's safety and comfort. According to NHTSA, a vehicle is rated based on these safety criteria, for which automobile manufacturers conduct a plethora of crash-related studies. Numerical simulation aids them in cutting down testing time and overall cost endured by providing a reliable amount of insights into the process. The current study is aimed at improving the crashworthiness of a crash box in a lightweight passenger car, such that it becomes more energy absorbent in terms of frontal impacts. All necessary parameters such as energy absorption, mean crush force, specific energy absorption, crush force efficiencies are evaluated based on analytical and finite element methods. There was a decent agreement between the analytical and simulation results, with an accuracy of 97%. The crashworthiness of the crash box was improved with the help of DOE-based response surface methodology (RSM). The RSM approach helped in improving the design of the crash box with enhanced EA & CFE by 30% and 8.8% respectively. The investigation of design variables on the energy absorption capacity of the thin-walled structure was also done. For the axial impact simulations, finite element solver Virtual Performance Solution − Pam Crash from the ESI group is used.


Author(s):  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Luděk Hynčík ◽  
Alojz Hanuliak

Objective: The future mobility challenges leads to considering new safety systems to protect vehicle passengers in non-standard and complex seating configurations. The objective of this study is to assess the performance of a brand new safety system called nanobag and to compare it to the traditional airbag performance in the frontal sled test scenario. Methods: The nanobag technology is assessed in the frontal crash test scenario and compared with the standard airbag by numerical simulation. The previously identified material model is used to assemble the nanobag numerical model. The paper exploits an existing validated human body model to assess the performance of the nanobag safety system. Using both the new nanobag and the standard airbag, the sled test numerical simulations with the variation of human bodies are performed in 30 km/h and 50 km/h frontal impacts. Results: The sled test results for both the nanobag and the standard airbag based on injury criteria shows a good and acceptable performance of the nanobag safety system compared to the traditional airbag. Conclusion: The results show that the nanobag system has its performance compared to the standard airbag, which means that thanks to the design, the nanobag safety system has a high potential and extended application for multi-directional protection against impact.


Author(s):  
Declan A. Patton ◽  
Aditya N. Belwadi ◽  
Jalaj Maheshwari ◽  
Kristy B. Arbogast

Previous studies of support legs in rearward-facing infant CRS models have focused on frontal impacts and have found that the presence of a support leg is associated with a reduction in head injury metrics. However, real-world crashes often involve an oblique principal direction of force. The current study used sled tests to evaluate the effectiveness of support legs in rearward-facing infant CRS models for frontal and frontal-oblique impacts with and without a simulated front row seatback. Frontal and frontal-oblique impact sled tests were conducted using the simulated Consumer Reports test method with and without the blocker plate, which was developed to represent a front row seatback. The Q1.5 anthropomorphic test device (ATD) was seated in rearward-facing infant CRS models, which were tested with and without support legs. The presence of a support leg was associated with significant reductions of head injury metrics below injury tolerance limits for all tests, which supports the findings of previous studies. The presence of a support leg was also associated with significant reductions of peak neck tensile force. The presence of the blocker plate resulted in greater head injury metrics compared to tests without the blocker plate, but the result was non-significant. However, the fidelity of the interaction between the CRS and blocker plate as an adequate representation of the interaction that would occur in a real vehicle is not well understood. The findings from the current study continue to support the benefit of support legs in managing the energy of impact for a child in a rearward-facing CRS.


2021 ◽  
Vol 22 (5) ◽  
pp. 1319-1335
Author(s):  
Xi Liu ◽  
Rui Liang ◽  
Yuanzhi Hu ◽  
Xuebang Tang ◽  
Christophe Bastien ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Julie A. Mansfield ◽  
Gretchen H. Baker ◽  
Rakshit Ramachandra ◽  
John H. Bolte
Keyword(s):  

Author(s):  
Carmen M. Vives-Torres ◽  
Manuel Valdano ◽  
Jesus R. Jimenez-Octavio ◽  
Julia Muehlbauer ◽  
Sylvia Schick ◽  
...  

Cervical pain and injuries are a major health problem globally. Existing neck injury criteria are based on experimental studies that included sled tests performed with volunteers, post-mortem human surrogates and animals. However, none of these studies have addressed the differences between young adults and elderly volunteers to date. Thus, this work analyzed the estimated axial and shear forces, and the bending moment at the craniocervical junction of nine young volunteers (18–30 years old) and four elderly volunteers (>65 years old) in a low-speed frontal deceleration. Since the calculation of these loads required the use of the mass and moment of inertia of the volunteers' heads, this study proposed new methods to estimate the inertial properties of the head of the volunteers based on external measurements that reduced the error of previously published methods. The estimated mean peak axial force (Fz) was −164.38 ± 35.04 N in the young group and −170.62 ± 49.82 N in the elderly group. The average maximum shear force (Fx) was −224.42 ± 54.39 N and −232.41 ± 19.23 N in the young and elderly group, respectively. Last, the estimated peak bending moment (My) was 13.63 ± 1.09 Nm in the young group and 14.81 ± 1.36 Nm in the elderly group. The neck loads experienced by the elderly group were within the highest values in the present study. Nevertheless, for the group of volunteers included in this study, no substantial differences with age were observed.


2021 ◽  
Author(s):  
Rachel Richardson ◽  
John-Paul Donlon ◽  
Mohan Jayathirtha ◽  
Jason L. Forman ◽  
Greg Shaw ◽  
...  

2021 ◽  
Vol 8 ◽  
pp. 205566832110503
Author(s):  
Daniel R Martel ◽  
Michelle R Tanel ◽  
Andrew C Laing

Introduction While protective headwear products (PHP) are designed to protect older adults from fall-related head injuries, there are limited data on their protective capacity. This study’s goal was to assess the impact attenuation provided by commercially available PHP during simulated head impacts. Methods A drop tower and Hybrid III headform measured the decrease in peak linear acceleration ( g atten) provided by 12 PHP for front- and back-of-head impacts at low (clinically relevant: 3.5 m/s) and high (5.7 m/s) impact velocities. Results The range of g atten across PHP was larger at the low velocity (56% and 41% for back and frontal impacts, respectively) vs. high velocity condition (27% and 38% for back and frontal impacts, respectively). A significant interaction between impact location and velocity was observed ( p < .05), with significantly greater g atten for back-of-head compared to front-of-head impacts at the low impact velocity (19% mean difference). While not significant, there was a modest positive association between g atten and product padding thickness for back-of-head impacts ( p = .095; r = 0.349). Conclusion This study demonstrates the wide range in impact attenuation across commercially available PHP, and suggests that existing products provide greater impact attenuation during back-of-head impacts. These data may inform evidence-based decisions for clinicians and consumers and help drive industry innovation.


2020 ◽  
pp. 1-6
Author(s):  
Rachel Richardson ◽  
Mohan Jayathirtha ◽  
Kalle Chastain ◽  
J.-P. Donlon ◽  
Jason Forman ◽  
...  

2020 ◽  
pp. 1-3
Author(s):  
Sagar Umale ◽  
Prashant Khandelwal ◽  
John Humm ◽  
Narayan Yoganandan

Sign in / Sign up

Export Citation Format

Share Document