scholarly journals Coherent waves of myelin plasticity during motor-skill learning

2021 ◽  
Author(s):  
Michela Azzaritto ◽  
Gabriel Ziegler ◽  
Eveline Huber ◽  
Patrick Grabher ◽  
Martina Callaghan ◽  
...  

Motor skill learning relies on neural plasticity in the motor and limbic systems. However, the spatial and temporal dependencies of these changes, and their microstructural underpinnings, remain unclear. Eighteen healthy males received training in a computer- controlled motion game 4 times a week, for 4 weeks. Performance improvements were observed in all trained participants. Serial myelin-sensitive multiparametric mapping at 3T during this period of intensive motor skill acquisition revealed temporally and spatially distributed, performance-related myelin-sensitive microstructural changes in the grey and white matter across the corticospinal system and hippocampus. Interestingly, analysis of the trajectory of these transient changes revealed a time-shifted choreography across white and grey matter of the corticospinal system as well as with changes in the hippocampus. Crucially, in the cranial corticospinal tracts, myelin-sensitive changes during training in the posterior part of the limb of the internal capsule were of greater magnitude in lower-limb trainees compared to upper limb trainees. Motor skill learning is depended on coherent waves of plasticity within a corticospinal-hippocampal loop.

2008 ◽  
Author(s):  
Michelle V. Thompson ◽  
Janet L. Utschig ◽  
Mikaela K. Vaughan ◽  
Marc V. Richard ◽  
Benjamin A. Clegg

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lasse Christiansen ◽  
Malte Nejst Larsen ◽  
Mads Just Madsen ◽  
Michael James Grey ◽  
Jens Bo Nielsen ◽  
...  

Abstract Motor skill acquisition depends on central nervous plasticity. However, behavioural determinants leading to long lasting corticospinal plasticity and motor expertise remain unexplored. Here we investigate behavioural and electrophysiological effects of individually tailored progressive practice during long-term motor skill training. Two groups of participants practiced a visuomotor task requiring precise control of the right digiti minimi for 6 weeks. One group trained with constant task difficulty, while the other group trained with progressively increasing task difficulty, i.e. continuously adjusted to their individual skill level. Compared to constant practice, progressive practice resulted in a two-fold greater performance at an advanced task level and associated increases in corticospinal excitability. Differences were maintained 8 days later, whereas both groups demonstrated equal retention 14 months later. We demonstrate that progressive practice enhances motor skill learning and promotes corticospinal plasticity. These findings underline the importance of continuously challenging patients and athletes to promote neural plasticity, skilled performance, and recovery.


2014 ◽  
Vol 112 (1) ◽  
pp. 156-164 ◽  
Author(s):  
James P. Coxon ◽  
Nicola M. Peat ◽  
Winston D. Byblow

Motor learning requires practice over a period of time and depends on brain plasticity, yet even for relatively simple movements, there are multiple practice strategies that can be used for skill acquisition. We investigated the role of intracortical inhibition in the primary motor cortex (M1) during motor skill learning. Event-related transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability and inhibition thought to involve synaptic and extrasynaptic γ-aminobutyric acid (GABA). Short intracortical inhibition (SICI) was assessed using 1- and 2.5-ms interstimulus intervals (ISIs). Participants learned a novel, sequential pinch-grip task on a computer in either a repetitive or interleaved practice structure. Both practice structures showed equivalent levels of motor performance at the end of acquisition and at retention 1 wk later. There was a novel task-related modulation of 1-ms SICI. Repetitive practice elicited a greater reduction of 1- and 2.5-ms SICI, i.e., disinhibition, between rest and task acquisition, compared with interleaved practice. These novel findings support the use of a repetitive practice structure for motor learning because the associated effects within M1 have relevance for motor rehabilitation.


Author(s):  
Catherine L. Ojakangas

The field of brain research has made numerous advances in the past few decades into how we learn new motor skills, from the value of sleep to the discovery of “mirror neurons,” which fire when we watch others performing movements we are attempting to learn. Accent modification may be conceptualized as a form of sensorimotor skill learning – learning to produce a set of movement components and performing them as a whole automatically in spontaneous speech. Motor skill learning occurs in stages and motor habits are formed after acquisition of the new behavior, consolidation of the new brain patterns, and automatic production in appropriate settings. New neural pathways are formed and both cortical and subcortical brain regions participate. The author of this article reviews concepts from the neuroscience literature in the field of motor skill acquisition, work which has primarily focused on the learning of arm and finger movements, and attempts to apply them in a practical manner for the clinician working with non-native English speakers. Discussed are the neurophysiology of motor skill learning, stages of habit formation, intermittent practice, sleep, feedback, mirror neurons and motor imagery. Practical suggestions are given to optimize the accent modification process for the clinician and client.


Author(s):  
Sara Cavaco

There is extensive evidence and it is widely recognized that motor skill learning is spared in patients with dense amnesia. However, the neural substrates of motor skill learning are a continuing topic of research and a current matter of debate. This review focuses on the differential contribution of the striatum and the cerebellum to learning skills that require either motor sequence or motor adaptation. A brief overview of the current knowledge helps understand why certain patient populations, such as patients with Parkinson's disease and patients with cerebellar ataxia, experience difficulty with motor skill acquisition.


2021 ◽  
Vol 11 (9) ◽  
pp. 3843
Author(s):  
Yifan Shi ◽  
Kelong Cai ◽  
Hao Zhu ◽  
Xiaoxiao Dong ◽  
Xuan Xiong ◽  
...  

Cross-sectional studies suggest that motor skill learning is associated with working memory (WM) and white matter integrity (WMI). However, it has not been established whether motor skill learning improves WM performance, and information on its neural mechanisms have not been clearly elucidated. Therefore, this study compared WM and WMI across time points prior to and following football juggling learning, in early adulthood (18–20 years old), relative to a control group. Study participants in the experimental group were subjected to football juggling for 10 weeks while participants in the control category went on with their routine life activities for the same period of time and were not involved in the learning-related activities. Data on cognitive measurements and that from diffusion tensor imaging (DTI) were collected before and after learning. There was a significant improvement in WM performance of the experimental group after motor learning, although no improvement was observed in the control group. Additionally, after learning, DTI data revealed a significant increase in functional anisotropy (FA) in the genu of corpus callosum (GOCC) and the right anterior corona radiata (R.ACR) in the experimental group. Moreover, the better WM associated with football juggling learning was correlated to a higher FA. Mediation analysis suggested that FA in the GOCC acts as a mediation variable between football juggling learning and WM. These findings show that motor skill learning improves the WM and remodels WMI in early adulthood. With a particular emphasis on the importance of WMI in motor skill learning and WM, this study also revealed the possible neural mechanisms mediated by WMI.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ragunathan Padmashri ◽  
Anand Suresh ◽  
Michael D. Boska ◽  
Anna Dunaevsky

Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP-) like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To test the hypothesis that astrocytic activity is necessary for motor-skill learning, we perturbed astrocytic function using pharmacological and genetic approaches. We find that perturbation of astrocytes either by selectively attenuating IP3R2 mediated astrocyte Ca2+signaling or using an astrocyte specific metabolic inhibitor fluorocitrate (FC) results in impaired motor-skill learning of a forelimb reaching-task in mice. Moreover, the learning impairment caused by blocking astrocytic activity using FC was rescued by administration of the gliotransmitter D-serine. The learning impairments are likely caused by impaired LTP as FC blocked LTP in slices and prevented motor-skill training-induced increases in synaptic AMPA-type glutamate receptorin vivo. These results support the conclusion that normal astrocytic Ca2+signaling during a reaching task is necessary for motor-skill learning.


Sign in / Sign up

Export Citation Format

Share Document