luminescent solar concentrators
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 180)

H-INDEX

53
(FIVE YEARS 14)

2022 ◽  
Vol 9 (1) ◽  
pp. 3-10
Author(s):  
Connor Atkinson

Phthalocyanine molecules have the potential to be used in select Dye Sensitized Solar Cells (DSSCs) and Luminescent Solar Concentrators (LSCs), due to UV-Vis absorbance in the 300-450 (nm) Soret Band, corresponding to π HOMO-1 to π* LUMO transition and 550-690 (nm) Q-band, corresponding to π HOMO to π* LUMO transitions. In this study Tetranitro Zinc (II) Phthalocyanine is synthesized via base catalysis before the product is characterized via IR, 1H NMR & UV-Vis analysis. Assessing the desirability of the Tetranitro Zinc (II) Phthalocyanine as a solar organic semiconducting dye in DSSCs and LSCs. The desirability is assessed by novel computational DFT calculations, of the aggregation binding mode to deduce if Aggregation-Caused Quenching (ACQ) is occurring in the aggregated sample. ACQ is known to reduce DSSCs and LSCs generation of useful photo-active current. Aggregation-Caused Quenching (ACQ) is mathematically indicated in Phthalocyanine aggregation and Tetranitro Zinc (II) Phthalocyanine’s desirability is assessed for further use in DSSCs and LSCs.


Author(s):  
Jiancang Chen ◽  
Haiguang Zhao ◽  
Zhilin Li ◽  
Xiujian Zhao ◽  
Xiao Gong

Luminescent solar concentrators (LSCs) have been widely considered to be promising large-scale sunlight collectors for photovoltaics (PV) due to their low cost and applicability to building-integrated photovoltaics (BIPV). However, low...


2021 ◽  
Vol 2 (4) ◽  
pp. 545-552
Author(s):  
Yujian Sun ◽  
Yongcao Zhang ◽  
Yuxin Li ◽  
Yilin Li

Luminescent solar concentrators (LSCs) are considered promising in their application as building-integrated photovoltaics (BIPVs). However, they suffer from low performance, especially in large-area devices. One of the key issues is the self-absorption of the luminophores. In this report, we focus on the study of self-absorption in perovskite-based LSCs. Perovskite nanocrystals (NCs) are emerging luminophores for LSCs. Studying the self-absorption of perovskite NCs is beneficial to understanding fundamental photon transport properties in perovskite-based LSCs. We analyzed and quantified self-absorption properties of perovskite NCs in an LSC with the dimensions of 6 in × 6 in × 1/4 in (152.4 mm × 152.4 mm × 6.35 mm) using three approaches (i.e., limited illumination, laser excitation, and regional measurements). The results showed that a significant number of self-absorption events occurred within a distance of 2 in (50.8 mm), and the photo surface escape due to the repeated self-absorption was the dominant energy loss mechanism.


APL Photonics ◽  
2021 ◽  
Author(s):  
Pengfei Xia ◽  
Shuhong Xu ◽  
Chunlei Wang ◽  
Dayan Ban

Optics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 259-265
Author(s):  
Yujian Sun ◽  
Yongcao Zhang ◽  
Yilin Li

Luminescent solar concentrators (LSCs) have been widely studied for their potential application as building-integrated photovoltaics (BIPV). While numerous efforts have been made to improve the performance, the photothermal (PT) properties of LSCs are rarely investigated. In this report, we studied the PT properties of an LSC with a power conversion efficiency (PCE) of 3.27% and a concentration ratio of 1.42. The results showed that the total PT power of the LSC was 13.2 W, and the heat was concentrated on the edge of the luminescent waveguide with a high heat power density of over 200 W m−2.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3770
Author(s):  
Fahad Mateen ◽  
Namcheol Lee ◽  
Sae Youn Lee ◽  
Syed Taj Ud Din ◽  
Woochul Yang ◽  
...  

Luminescent solar concentrators (LSCs) provide a transformative approach to integrating photovoltaics into a built environment. In this paper, we report thin-film LSCs composed of intramolecular charge transfer fluorophore (DACT-II) and discuss the effect of two polymers, polymethyl methacrylate (PMMA), and poly (benzyl methacrylate) (PBzMA) on the performance of large-area LSCs. As observed experimentally, DACT-II with the charge-donating diphenylaminocarbazole and charge-accepting triphenyltriazine moieties shows a large Stokes shift and limited re-absorption losses in both polymers. Our results show that thin-film LSC (10 × 10 × 0.3 cm3) with optimized concentration (0.9 wt%) of DACT-II in PBzMA gives better performance than that in the PMMA matrix. In particular, optical conversion efficiency (ηopt) and power-conversion efficiency (ηPCE) of DACT-II/PBzMA LSC are 2.32% and 0.33%, respectively, almost 1.2 times higher than for DACT-II/PMMA LSC.


Sign in / Sign up

Export Citation Format

Share Document