zwitterionic surfactant
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 50)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Ying Yu ◽  
Alvinda Sri Hanamertani ◽  
Shehzad Ahmed ◽  
Zunsheng Jiao ◽  
Jonathan Fred McLaughlin ◽  
...  

Abstract Injecting carbon dioxide (CO2) as foam during enhanced oil recovery (EOR) can improve injectate mobility and increase sweep efficiency. Integrating CO2-foam techniques with carbon capture, utilization and storage (CCUS) operations is of recent interest, as the mobility control and sweep efficiency increases seen in EOR could also benefit CO2 storage during CCUS. In this study, a variety of different charge, hydrocarbon chain length, head group surfactants were evaluated by surface tension, bulk and dynamic CO2-foam performance assessments for CCUS. The optimal foam candidate was expected to provide satisfying mobility control effects under reservoir conditions, leading to an improved water displacement efficiency during CO2-foam flooding that favors a more significant CO2 storage potential. All tested surfactants were able to lower their surface tensions against scCO2 by 4-5 times, enlarging the surface area of solution/gas contact; therefore, more CO2 could be trapped in the foam system. A zwitterionic surfactant was found to have slightly higher surface tension against CO2 while exhibiting the highest foaming ability and the most prolonged foam stability with a relatively slower drainage rate among all tested surfactants. The dynamic performance of scCO2-foam stabilized by this zwitterionic surfactant was also evaluated in sandstone and carbonate cores at 13.79 MPa and 90°C. The results show that the mobility control development in carbonate core was relatively slower, suggesting a gradual foam generation process attributed to the higher permeability than the case in sandstone core. A more significant cumulative CO2 storage potential improvement, quantified based on the water production, was recorded in sandstone (53%) over the carbonate (47%). Overall, the selected foam has successfully developed CO2 mobility control and improved water displacement in the occurrence of in-situ foam generation, hence promoting the storage capacity for the injected CO2. This work has optimized the foaming agent selection method at the actual reservoir conditions and evaluated the scCO2-foam performance in establishing high flow resistance and improving the CO2 storage capacity, which benefits integrated CCUS studies or projects utilizing CO2-foam techniques.


2021 ◽  
Vol 22 (22) ◽  
pp. 12157
Author(s):  
Ewelina Godek ◽  
Elżbieta Grządka ◽  
Urszula Maciołek ◽  
Anna Bastrzyk

The influence of the pseudoamphoteric zwitterionic surfactant cocamidopropylbetaine (CAPB) on the stabilizing flocculating properties of the aqueous suspensions of glauconite (GT) with cationic guar gum (CGG) at various pH values was investigated. The following techniques were used: turbidimetry, UV-VIS spectrophotometry, tensiometry, electrophoretic mobility measurements, SEM, CHN, XRD, and FT-IR. It was established that CGG is an effective glauconite flocculant. Moreover, the most probable mechanism that is responsible for flocculation is bridge flocculation resulting from polymer adsorption on the glauconite surface. The adsorption process is caused by electrostatic interactions between the negatively charged glauconite surface and the positively charged polymer. The amount of CGG adsorption increases with the increase of the pH, which was confirmed by the adsorption and zeta potential measurements. The addition of CAPB increases the amount of the polymer adsorption due to the formation of intermolecular polymer–surfactant complexes; however, it reduces flocculation effectiveness.


2021 ◽  
Vol 63 (2) ◽  
pp. 170-180
Author(s):  
V. S. Molchanov ◽  
A. I. Kuklin ◽  
A. S. Orekhov ◽  
N. A. Arkharova ◽  
E. S. Khudoleeva ◽  
...  

Abstract Nanocomposite networks of surfactant micellar chains and natural bentonite clay nanoplates are studied by rheometry, small-angle neutron scattering, and cryogenic transmission electron microscopy. It is shown that, in an aqueous medium in the presence of a small part of an anionic surfactant, sodium dodecyl sulfate, the molecules of a biodegradable zwitterionic surfactant, oleyl amidopropyl dimethyl carboxybetaine, form micron-length living micellar chains which entangle and form a network possessing well-defined viscoelastic properties. It is found that addition of negatively charged clay nanoplates leads to an increase in viscosity and relaxation time by an order of magnitude. This is explained by the incorporation of the nanoplates into the network as physical multifunctional crosslinks. The incorporation occurs via the attachment of semispherical end-caps of the micelles to the surface of the particles covered with a surfactant layer, as visualized by cryogenic transmission electron microscopy. As the amount of nanoplates is increased, the rheological properties reach plateau; this is associated with the attachment of all end parts of micelles to nanoplates. The developed nanocomposite soft networks based on safe and eco-friendly components are promising for various practical applications.


Author(s):  
Miguel Angel Roncoroni ◽  
Pedro Romero ◽  
Jesús Montes ◽  
Guido Bascialla ◽  
Rosario Rodríguez ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Hou ◽  
Ming Han ◽  
Jinxun Wang

AbstractThis work investigates the effect of the surface charges of oil droplets and carbonate rocks in brine and in surfactant solutions on oil production. The influences of the cations in brine and the surfactant types on the zeta-potentials of both oil droplets and carbonate rock particles are studied. It is found that the addition of anionic and cationic surfactants in brine result in both negative or positive zeta-potentials of rock particles and oil droplets respectively, while the zwitterionic surfactant induces a positive charge on rock particles and a negative charge on oil droplets. Micromodels with a CaCO3 nanocrystal layer coated on the flow channels were used in the oil displacement tests. The results show that when the oil-water interfacial tension (IFT) was at 10−1 mN/m, the injection of an anionic surfactant (SDS-R1) solution achieved 21.0% incremental oil recovery, higher than the 12.6% increment by the injection of a zwitterionic surfactant (SB-A2) solution. When the IFT was lowered to 10−3 mM/m, the injection of anionic/non-ionic surfactant SMAN-l1 solution with higher absolute zeta potential value (ζoil + ζrock) of 34 mV has achieved higher incremental oil recovery (39.4%) than the application of an anionic/cationic surfactant SMAC-l1 solution with a lower absolute zeta-potential value of 22 mV (30.6%). This indicates that the same charge of rocks and oil droplets improves the transportation of charged oil/water emulsion in the porous media. This work reveals that the surface charge in surfactant flooding plays an important role in addition to the oil/water interfacial tension reduction and the rock wettability alteration.


2021 ◽  
Vol 774 ◽  
pp. 144974
Author(s):  
Yixuan Yang ◽  
Runliang Zhu ◽  
Qingze Chen ◽  
Jieqi Xing ◽  
Lingya Ma ◽  
...  

Author(s):  
Leandro F. Lopes ◽  
Juliana M.F. Façanha ◽  
Luis Maqueira ◽  
Felipe R.T. Ribeiro ◽  
Aurora Pérez-Gramatges

Sign in / Sign up

Export Citation Format

Share Document