Frequency Dependancy of Dynamic Force Coefficients for Hermetic Squeeze Film Dampers Utilizing Fluid-Bounding Flexible Structures

2021 ◽  
Author(s):  
Bugra Ertas ◽  
Keith Gary

Abstract The following paper focuses on the dynamic behavior of hermetic squeeze film dampers (HSFD) that utilize fluid-bounding flexible members as a part of the support structure. More specifically, the current paper advances an engineering design modification to the existing HSFD concept, which is aimed at rendering the dynamic force coefficients frequency independent. The paper builds on past HSFD testing and modeling approaches to develop higher fidelity analytical models, which are used to investigate different damper configurations while taking keen interest in the frequency dependency of force coefficients. The analytical study leverages commercially available finite element analysis (FEA) and computational fluid dynamics (CFD) software to conduct several fluid-structure-interaction (FSI) simulations of various damper architectures. In addition to the FSI analysis a more computationally efficient reduced order model (ROM) was developed, coupling structural flexibility with the fluid dynamics in the damper. Ultimately, these design tools were used to identify critical design features and configurations needed for constant linear frequency independent force coefficients. The results show a damper configuration with minimal frequency dependency of the stiffness and damping coefficients when incorporating pass through channels in combination with accumulator volumes. The paper also uses the improved design approach of the HSFD to put forth a notional integrated bearing design incorporating the new HSFD concept.

Author(s):  
Keith Gary ◽  
Bugra Ertas

Abstract Dynamic force coefficients are presented from experimental results of a radial gas bearing with hermetically sealed squeeze film dampers (HSFDs) in the bearing support. HSFDs are a relatively new technology aimed to increase damping levels in gas bearings while sustaining an oil-free bearing sump. Past HSFD designs proved bulky and contained many components making it difficult to employ in size-limited environments such as jet engines, while the diffusion bonded bearing discussed in this paper provides a compact integral design. Details of the design are found in a companion paper by Ertas (Ertas, B. H., 2019, “Compliant Hybrid Gas Bearing Using Integral Hermetically-Sealed Squeeze Film Dampers,” ASME Paper No. GT2018-76312). Test results for a 3 in. (76.2 mm) diameter bearing using a test rig providing static loads up to 80 lbs (356 N), controlled-dynamic orbital motion, and speeds up to 27 krpm are shown. Results include frequency- and speed-dependent direct and cross-coupled rotordynamic force coefficients. Dynamic testing showed little dependence on rotor speed or static load and exhibited frequency dependency at lower excitation frequencies. Cross-coupled terms are generally an order of magnitude lower than direct terms. Results show the direct stiffness coefficients increasing with frequency, while direct damping decays radically with frequency. Comparison of the overall gas bearing coefficients with the companion paper (Ertas, B. H., 2019, “Compliant Hybrid Gas Bearing Using Integral Hermetically-Sealed Squeeze Film Dampers,” ASME Paper No. GT2018-76312), showing bearing support coefficients, reveals a drastic reduction in damping when engaging the gas film. The results also indicate that the bearing can withstand vibration levels representative of a large rotor system critical speed at lower excitation frequencies.


1992 ◽  
Vol 114 (4) ◽  
pp. 659-664 ◽  
Author(s):  
Luis A. San Andres

A novel analysis for the dynamic force response of a squeeze film damper with a central feeding groove considers the dynamic flow interaction between the squeeze film lands and the feeding groove. For small amplitude centered motions and based on the short bearing model, corrected values for the damping and inertia force coefficients are determined. Correlations with existing experimental evidence is excellent. Analytical results show that the grooved-damper behaves at low frequencies as a single land damper. Dynamic force coefficients are determined to be frequency dependent. Analytical predictions show that the combined action of fluid inertia and groove volume—liquid compressibility affects the force coefficients for dynamic excitation at large frequencies.


2019 ◽  
Vol 254 ◽  
pp. 08005 ◽  
Author(s):  
Petr Ferfecki ◽  
Jaroslav Zapoměl ◽  
Marek Gebauer ◽  
Václav Polreich ◽  
Jiří Křenek

Rotor vibration attenuation is achieved with damping devices which work on different, often mutually coupled, physical principles. Squeeze film dampers are damping devices that have been widely used in rotordynamic applications. A new concept of a 5-segmented integral squeeze film damper, in which a flexure pivot tilting pad journal bearing is integrated, was investigated. The damper is studied for the eccentric position between the outer and inner ring of the squeeze film land. The ANSYS CFX software was used for solving the pressure and velocity distribution. The development of the complex three-dimensional computational fluid dynamics model of the squeeze film damper, learning more about the effect of the forces in the damper, and the knowledge about the behaviour of the flow are the principal contributions of this article.


2021 ◽  
Author(s):  
Luis San Andrés ◽  
Bryan Rodríguez

Abstract In rotor-bearing systems, squeeze film dampers (SFDs) assist to reduce vibration amplitudes while traversing a critical speed and also offer a means to suppress rotor instabilities. Along with an elastic support element, SFDs are effective means to isolate a rotor from its casing. O-rings (ORs), piston rings (PRs) and side plates as end seals reduce leakage and air ingestion while amplifying the viscous damping in configurations with limited physical space. ORs also add a centering stiffness and damping to a SFD. The paper presents experiments to quantify the dynamic forced response of an O-rings sealed ends SFD (OR-SFD) lubricated with ISO VG2 oil supplied at a low pressure (0.7 bar(g)). The damper is 127 mm in diameter (D), short in axial length L = 0.2D, and the film clearance c = 0.279 mm. The lubricant flows into the film land through a mechanical check valve and exits through a single port. Upstream of the check valve, a large plenum filled with oil serves to attenuate dynamic pressure disturbances. Multiple sets of single-frequency dynamic loads, 10 Hz to 120 Hz, produce circular centered orbits with amplitudes r = 0.1c, 0.15c and 0.2c. The experimental results identify the test rig structure, ORs and SFD force coefficients; namely stiffness (K), mass (M) and viscous damping (C). The ORs coefficients are frequency independent and show a sizeable direct stiffness, KOR ∼ 50% of the test rig structure stiffness, along with a quadrature stiffness, K0∼0.26 KOR, demonstrative of material damping. The lubricated system damping coefficient equals CL = (CSFD + COR); the ORs contributing 10% to the total. The experimental SFD damping and inertia coefficients are large in physical magnitude; CSFD slightly grows with orbit size whereas MSFD is relatively constant. The added mass (MSFD) is approximately four-fold the bearing cartridge mass; hence, the test rig natural frequency drops by ∼50% once lubricated. A computational physics model predicts force coefficients that are just 10% lower than those estimated from experiments. The amplitude of measured dynamic pressures upstream of the plenum increases with excitation frequency. Unsuspectedly, during dynamic load operation, the check valve did allow for lubricant backflow into the plenum. Post-tests verification demonstrates that, under static pressure conditions, the check valve does work since it allows fluid flow in just one direction.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Tingcheng Wu ◽  
Luis San Andrés

In multiple stage centrifugal pumps, balance pistons, often comprising a grooved annular seal, equilibrate the full pressure rise across the pump. Grooves in the stator break the evolution of fluid swirl and increase mechanical energy dissipation; hence, a grooved seal offers a lesser leakage and lower cross-coupled stiffness than a similar size uniform clearance seal. To date, bulk-flow modelbulk-flow models (BFMs) expediently predict leakage and rotor dynamic force coefficients of grooved seals; however, they lack accuracy for any other geometry besides rectangular. Note that scalloped and triangular (serrated) groove seals are not uncommon. In these cases, computational fluid dynamics (CFD) models seals of complex shape to produce leakage and force coefficients. Alas, CFD is not yet ready for routine engineer practice. Hence, an intermediate procedure presently takes an accurate two-dimensional (2D) CFD model of a smaller flow region, namely a single groove and adjacent land, to produce stator and rotor surface wall friction factors, expressed as functions of the Reynolds numbers, for integration into an existing BFM and ready prediction of seal leakage and force coefficients. The selected groove-land section is well within the seal length and far away from the effects of the inlet condition. The analysis takes three water lubricated seals with distinct groove shapes: rectangular, scalloped, and triangular. Each seal, with length/diameter L/D = 0.4, has 44 grooves of shallow depth dg ∼ clearance Cr and operates at a rotor speed equal to 5,588 rpm (78 m/s surface speed) and with a pressure drop of 14.9 MPa. The method validity is asserted when 2D (single groove-land) and three-dimensional (3D) (whole seal) predictions for pressure and velocity fields are compared against each other. The CFD predictions, 2D and 3D, show that the triangular groove seal has the largest leakage, 41% greater than the rectangular groove seal does, albeit producing the smallest cross-coupled stiffnesses and whirl frequency ratio (WFR). On the other hand, the triangular groove seal has the largest direct stiffness and damping coefficients. The scalloped groove seal shows similar rotordynamic force coefficients as the rectangular groove seal but leaks 13% more. For the three seal groove types, the modified BFM predicts leakage that is less than 6% away from that delivered by CFD, whereas the seal stiffnesses (both direct and cross-coupled) differ by 13%, the direct damping coefficients by 18%, and the added mass coefficients are within 30%. The procedure introduced extends the applicability of a BFM to predict the dynamic performance of grooved seals with distinctive shapes.


2019 ◽  
Vol 43 (3) ◽  
pp. 306-321 ◽  
Author(s):  
Maxime Perreault ◽  
Sina Hamzehlouia ◽  
Kamran Behdinan

In high-speed turbomachinery, the presence of rotor vibrations, which produce undesirable noise or shaft deflection and losses in performance, has brought up the need for the application of a proper mechanism to attenuate the vibration amplitudes. Squeeze-film dampers (SFDs) are a widely employed solution to the steady-state vibrations in high-speed turbomachinery. SFDs contain a thin film of lubricant that is susceptible to changes in temperature. For this reason, the analysis of thermohydrodynamic (THD) effects on the SFD damping properties is essential. This paper develops a computational fluid dynamics (CFD) model to analyze the THD effects in SFDs, and enabling the application of CFD analysis to be a base-line for validating the accuracy of analytical THD SFD models. Specifically, the CFD results are compared against numerical simulations at different operating conditions, including eccentricity ratios and journal whirl speeds. The comparisons demonstrate the effective application of CFD for THD analysis of SFDs. Additionally, the effect of the lubricant THDs on the viscosity, maximum and mass-averaged temperature, as well as heat generation rates inside the SFD lubricant are analyzed. The temperature of the lubricant is seen to rise with increasing whirl speed, eccentricity ratios, damper radial clearance, and shaft radii.


1998 ◽  
Vol 120 (2) ◽  
pp. 397-404 ◽  
Author(s):  
L. San Andre´s ◽  
D. Lubell

Squeeze film dampers (SFDs) provide vibration attenuation and structural isolation to aircraft gas turbine engines which must be able to tolerate larger imbalances while operating above one or more critical speeds. Rotor-bearing-SFD systems are regarded in theory as highly nonlinear, showing jump phenomena and even chaotic behavior for sufficiently large levels of rotor imbalance. Yet, few experimental results of practical value have verified the analytical predictions. A test rig for measurement of the dynamic forced response of a three-disk rotor (45 kg) supported on two cylindrical SFDs is described. The major objective is to provide a reliable data base to validate and enhance SFD design practice and to allow a direct comparison with analytical models. The open-ends SFD are supported by four-bar centering structures, each with a stiffness of 3.5 MN/m. Measured synchronous responses to 9000 rpm due to various imbalances show the rotor-SFD system to be well damped with amplification factors between 1.6 and 2.1 while traversing cylindrical and conical modes critical speeds. The rotor amplitudes of motion are found to be proportional to the imbalances for the first mode of vibration, and the damping coefficients extracted compare reasonably well to predictions based on the full-film, open-ends SFD. Tight lip (elastomeric) seals contribute greatly to the overall damping of the test rig. Measured dynamic pressures at the squeeze film lands are well above ambient values with no indication of lubricant dynamic cavitation as simple theoretical models dictate. The measurements show absence of nonlinear behavior of the rotor-SFD apparatus for the range of imbalances tested.


Author(s):  
Luis San Andrés

Aircraft engine rotors are particularly sensitive to rotor imbalance and sudden maneuver loads, since they are always supported on rolling element bearings with little damping. Most engines incorporate squeeze film dampers (SFDs) as means to dissipate mechanical energy from rotor vibrations and to ensure system stability. The paper quantifies experimentally the forced performance of a SFD comprising two parallel film lands separated by a deep central groove. Tests are conducted on two open ends SFDs, both with diameter D = 127 mm and nominal radial clearance c = 0.127 mm. One damper has film lands with length L = 12.7 mm (short length), while the other has 25.4 mm land lengths. The central groove has width L and depth 3/4 L. A light viscosity lubricant flows into the central groove via three orifices, 120 deg apart and then through the film lands to finally exit to ambient. In operation, a static loader pulls the bearing to various eccentric positions and electromagnetic shakers excite the test system with periodic loads to generate whirl orbits of specific amplitudes. A frequency domain method identifies the SFD damping and inertia force coefficients. The long damper generates six times more damping and about three times more added mass than the short length damper. The damping coefficients are sensitive to the static eccentricity (up to ∼ 0.5 c), while showing lesser dependency on the amplitude of whirl motion (up to 0.2 c). On the other hand, inertia coefficients increase mildly with static eccentricity and decrease as the amplitude of whirl motion increases. Cross-coupled force coefficients are insignificant for all imposed operating conditions on either damper. Large dynamic pressures recorded in the central groove demonstrate the groove does not isolate the adjacent squeeze film lands, but contributes to the amplification of the film lands’ reaction forces. Predictions from a novel SFD model that includes flow interactions in the central groove and feed orifices agree well with the test force coefficients for both dampers. The test data and predictions advance current knowledge and demonstrate that SFD-forced performance is tied to the lubricant feed arrangement.


1986 ◽  
Vol 108 (2) ◽  
pp. 332-339 ◽  
Author(s):  
L. San Andre´s ◽  
J. M. Vance

The effects of fluid inertia and turbulence on the force coefficients of squeeze film dampers are investigated analytically. Both the convective and the temporal terms are included in the analysis of inertia effects. The analysis of turbulence is based on friction coefficients currently found in the literature for Poiseuille flow. The effect of fluid inertia on the magnitude of the radial direct inertia coefficient (i.e., to produce an apparent “added mass” at small eccentricity ratios, due to the temporal terms) is found to be completely reversed at large eccentricity ratios. The reversal is due entirely to the inclusion of the convective inertia terms in the analysis. Turbulence is found to produce a large effect on the direct damping coefficient at high eccentricity ratios. For the long or sealed squeeze film damper at high eccentricity ratios, the damping prediction with turbulence included is an order of magnitude higher than the laminar solution.


Sign in / Sign up

Export Citation Format

Share Document