aerosol optical extinction
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
pp. 118864
Author(s):  
Xuwu Chen ◽  
Xiaodong Li ◽  
Xin Li ◽  
Jie Liang ◽  
Jinjin Li ◽  
...  


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1277
Author(s):  
José Alex Zenteno-Hernández ◽  
Adolfo Comerón ◽  
Alejandro Rodríguez-Gómez ◽  
Constantino Muñoz-Porcar ◽  
Giuseppe D’Amico ◽  
...  

This paper aims to quantify the improvement obtained with a purely rotational Raman (PRR) channel over a vibro-rotational Raman (VRR) channel, used in an aerosol lidar with elastic and Raman channels, in terms of signal-to-noise ratio (SNR), effective vertical resolution, and absolute and relative uncertainties associated to the retrieved aerosol optical (extinction and backscatter) coefficients. Measurements were made with the European Aerosol Research Lidar Network/Universitat Politècnica de Catalunya (EARLINET/UPC) multi-wavelength lidar system enabling a PRR channel at 353.9 nm, together with an already existing VRR (386.7 nm) and an elastic (354.7 nm) channels. Inversions were performed with the EARLINET Single Calculus Chain (SCC). When using PRR instead of VRR, the measurements show a gain in SNR of a factor 2.8 and about 7.6 for 3-h nighttime and daytime measurements, respectively. For 3-h nighttime (daytime) measurements the effective vertical resolution is reduced by 17% (20%), the absolute uncertainty (associated to the extinction) is divided by 2 (10) and the relative uncertainty is divided by 3 (7). During daytime, VRR extinction coefficient is retrieved in a limited height range (<2.2 km) preventing the SCC from finding a suitable calibration range in the search height range. So the advantage of using PRR instead of VRR is particularly evidenced in daytime conditions. For nighttime measurements, decreasing the time resolution from 3 to 1 h has nearly no effect on the relative performances of PRR vs. VRR.



2016 ◽  
Vol 16 (17) ◽  
pp. 11207-11217 ◽  
Author(s):  
Justin H. Dingle ◽  
Kennedy Vu ◽  
Roya Bahreini ◽  
Eric C. Apel ◽  
Teresa L. Campos ◽  
...  

Abstract. Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July–August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext ∕ ΔCO) were higher in aged urban air masses compared to fresh air masses by  ∼  50 %. The resulting increase in Δβext ∕ ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&amp;G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g−1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11–12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.



2016 ◽  
Author(s):  
Kennedy T. Vu ◽  
Justin H. Dingle ◽  
Roya Bahreini ◽  
Patrick J. Reddy ◽  
Teresa L. Campos ◽  
...  

Abstract. We present airborne measurements made in the Colorado Front Range aboard the NSF C-130 aircraft during the 2014 Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) project. Data on trace gases, non-refractory sub-micron aerosol chemical constituents, and aerosol optical extinction (βext) at λ = 632 nm in the presence and absence of a surface mesoscale circulation pattern, called the Denver Cyclone, were analyzed in three study regions of the Front Range: In-Flow, Northern Front Range (NFR), and Denver Metropolitan (DM). Pronounced increases in mass concentrations of organics, nitrate, and sulfate in NFR and DM were observed during the cyclone episodes (27–28 July) compared to the non-cyclonic days (26 July, 02–03 August). Organics (OA) dominated the mass concentrations on all evaluated days, with a 45 % increase in OA on cyclone days across all three regions while the increase during the cyclone episode was up to ~ 80 % for DM, from 3.78 ± 1.55 µg sm−3 to 6.78 ± 1.78 µg sm−3, where sm−3 is the STP unit of volume of air. Average nitrate mass concentrations were 0.26 ± 0.27 µg sm−3 vs. 1.03 ± 0.74 µg sm−3 followed by sulfate with an average of 0.58 ± 0.23 µg sm−3 vs. 1.08 ± 0.73 µg sm−3 on non-cyclone vs. cyclonic days, respectively. In the most aged air masses (NOx/NOy 



2016 ◽  
Author(s):  
Justin H. Dingle ◽  
Kennedy Vu ◽  
Roya Bahreini ◽  
Eric C. Apel ◽  
Teresa L. Campos ◽  
...  

Abstract. Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver Metropolitan Area as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) campaign during July–August 2014. An Aerodyne Cavity Attenuated Phase Shift particle light extinction monitor (CAPS-PMex) was deployed to measure dry, βext of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior under various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext/ΔCO) were significantly increased in highly aged air masses compared to fresh air masses by 50–60 %. The resulting increase in Δβext/ΔCO under highly aged air masses was accompanied by formation of secondary organic aerosols (SOA). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&amp;G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.83–3.30 m2 g−1, with the minimum and maximum values observed in agriculture and urban + O&amp;G influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During Aug. 11–12, regional influence of a biomass burning event was observed, increasing the background βext by 10–15 Mm−1 and the estimated MEE and Δβext/ΔCO values in the Front Range.



2013 ◽  
Vol 6 (10) ◽  
pp. 2825-2837 ◽  
Author(s):  
N. Rahpoe ◽  
C. von Savigny ◽  
M. Weber ◽  
A.V. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. A comprehensive error characterization of SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) limb ozone profiles has been established based upon SCIATRAN transfer model simulations. The study was carried out in order to evaluate the possible impact of parameter uncertainties, e.g. in albedo, stratospheric aerosol optical extinction, temperature, pressure, pointing, and ozone absorption cross section on the limb ozone retrieval. Together with the a posteriori covariance matrix available from the retrieval, total random and systematic errors are defined for SCIAMACHY ozone profiles. Main error sources are the pointing errors, errors in the knowledge of stratospheric aerosol parameters, and cloud interference. Systematic errors are of the order of 7%, while the random error amounts to 10–15% for most of the stratosphere. These numbers can be used for the interpretation of instrument intercomparison and validation of the SCIAMACHY V 2.5 limb ozone profiles in a rigorous manner.



2013 ◽  
Vol 6 (3) ◽  
pp. 4645-4676 ◽  
Author(s):  
N. Rahpoe ◽  
C. von Savigny ◽  
M. Weber ◽  
A.V. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. A comprehensive error characterisation of SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) limb ozone profiles has been established based upon SCIATRAN transfer model simulations. The study was carried out in order to evaluate the possible impact of parameter uncertainties, e.g., in albedo, stratospheric aerosol optical extinction, temperature, pressure, pointing and ozone absorption cross section on the limb ozone retrieval. Together with the a posteriori covariance matrix available from the retrieval, total random and systematic errors are defined for SCIAMACHY ozone profiles. Main error sources are the pointing errors, errors in the knowledge of stratospheric aerosol parameters, and cloud interference. Systematic errors are on the order of 7%, while the random error amounts to 10–15% for a single profile for most part of the stratosphere. These numbers can be used for the interpretation of instrument intercomparison and validation of the SCIAMACHY limb ozone profiles in a rigorous manner.





Sign in / Sign up

Export Citation Format

Share Document