air mass types
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Edward C. Hodgson ◽  
Ian D. Phillips

AbstractA synoptic typing approach was undertaken to examine the seasonal relationship (winter versus summer) between air mass types and pollutant concentrations of O3, PM10, NOx, NO2 and CO in Birmingham, UK, from 2000 to 2015. Daily means of seven surface meteorological variables were entered into a P-mode principal component analysis. Three principal components explained 72.2% (72.9%) of the variance in winter (summer). Cluster analysis was used to group together days with similar PC scores and thus similar meteorological conditions. Six clusters provided the best air mass classification in both seasons. High pollutant concentrations were associated with anticyclonic types. In particular, tropical (polar) continental air mass type was most likely to produce extremely high concentrations in summer (winter). In winter, a sequence of Polar Continental (cool and humid) and Binary Mid-latitude Anticyclonic Maritime—Sub-Polar Cyclonic Maritime (cold and dry) induced severe pollution episodes in all pollutants. Whilst the mean duration of severe pollution episodes varied little between winter and summer (O3 was an exception, with severe episodes lasting 20% longer in summer), high pollutant extremes were more common in winter. This was due to more favourable meteorological conditions (e.g. temperature inversions) and increased anthropogenic emissions during the cold season.


2021 ◽  
Author(s):  
EDWARD C HODGSON ◽  
Ian Douglas Phillips

Abstract A synoptic typing approach was undertaken to examine the seasonal relationship (winter versus summer) between air mass types and pollutant concentrations of O 3 , PM10, NO x , NO 2 and CO in Birmingham, United Kingdom from 2000 to 2015. Daily means of seven surface meteorological variables were entered into a P-mode principal component analysis. Three principal components explained 72.2% (72.9%) of the variance in winter (summer). Cluster analysis was used to group together days with similar PC scores and thus homogeneous meteorological conditions. Six clusters provided the best air mass classification in both seasons. High pollutant concentrations were associated with anticyclonic types. In particular, tropical (polar) continental air mass type was most likely to produce extremely high concentrations in summer (winter). In winter, a sequence of Polar Continental (cool and humid) and Binary Mid-latitude Anticyclonic Maritime – Sub-Polar Cyclonic Maritime (cold and dry) induced severe pollution episodes in all pollutants. Whilst the mean duration of severe pollution episodes varied little between winter and summer (O 3 was an exception, with severe episodes lasting 20% longer in summer), high pollutant extremes were more common in winter. This was due to more favourable meteorological conditions (e.g., temperature inversions) and increased anthropogenic emissions during the cold season.


2021 ◽  
pp. 118371
Author(s):  
Eva-Lou Edwards ◽  
Andrea F. Corral ◽  
Hossein Dadashazar ◽  
Anne E. Barkley ◽  
Cassandra J. Gaston ◽  
...  

2018 ◽  
Vol 18 (21) ◽  
pp. 16099-16119 ◽  
Author(s):  
Barbara Ervens ◽  
Armin Sorooshian ◽  
Abdulmonam M. Aldhaif ◽  
Taylor Shingler ◽  
Ewan Crosbie ◽  
...  

Abstract. The formation of sulfate and secondary organic aerosol mass in the aqueous phase (aqSOA) of cloud and fog droplets can significantly contribute to ambient aerosol mass. While tracer compounds give evidence that aqueous-phase processing occurred, they do not reveal the extent to which particle properties have been modified in terms of mass, chemical composition, hygroscopicity, and oxidation state. We analyze data from several field experiments and model studies for six air mass types (urban, biogenic, marine, wild fire biomass burning, agricultural biomass burning, and background air) using aerosol size and composition measurements for particles 13–850 nm in diameter. We focus on the trends of changes in mass, hygroscopicity parameter κ, and oxygen-to-carbon (O ∕ C) ratio due to chemical cloud processing. We find that the modification of these parameters upon cloud processing is most evident in urban, marine, and biogenic air masses, i.e., air masses that are more polluted than very clean air (background air) but cleaner than heavily polluted plumes as encountered during biomass burning. Based on these trends, we suggest that the mass ratio (Rtot) of the potential aerosol sulfate and aqSOA mass to the initial aerosol mass can be used to predict whether chemical cloud processing will be detectable. Scenarios in which this ratio exceeds Rtot∼0.5 are the most likely ones in which clouds can significantly change aerosol parameters. It should be noted that the absolute value of Rtot depends on the considered size range of particles. Rtot is dominated by the addition of sulfate (Rsulf) in all scenarios due to the more efficient conversion of SO2 to sulfate compared to aqSOA formation from organic gases. As the formation processes of aqSOA are still poorly understood, the estimate of RaqSOA is likely associated with large uncertainties. Comparison to Rtot values as calculated for ambient data at different locations validates the applicability of the concept to predict a chemical cloud-processing signature in selected air masses.


2018 ◽  
Author(s):  
Barbara Ervens ◽  
Armin Sorooshian ◽  
Abdulnoman M. Aldhaif ◽  
Taylor Shingler ◽  
Ewan Crosbie ◽  
...  

Abstract. The formation of sulfate and secondary organic aerosol mass in the aqueous phase (aqSOA) of cloud and fog droplets can significantly contribute to ambient aerosol mass. While tracer compounds give evidence that aqueous phase processing occurred, they do not reveal the extent to which particle properties have been modified in terms of mass, chemical composition, hygroscopicity and oxidation state. We analyse data from several field experiments and model studies for six air mass types (urban, biogenic, marine, wild fire biomass burning, agricultural biomass burning and background air). We focus on the trends of changes in mass, hygroscopicity parameter κ, and oxygen-to-carbon (O / C) ratio due to cloud processing. We find that the modification of these parameters upon cloud-processing is most evident in urban, marine and biogenic air masses, i.e. air masses that are more polluted than very clean air (background air) but cleaner than heavily polluted plumes as encountered during biomass burning. Based on these trends, we suggest that the mass ratio (Rtot) of the potential aerosol sulfate and aqSOA mass to the initial aerosol mass can be used to predict whether cloud processing will be detectable. Scenarios where this ratio exceeds Rtot ~ 2 are the most likely ones where clouds can significantly change aerosol parameters. Comparison to Rtot values as calculated for ambient data at different locations confirm the applicability of the concept to predict a cloud-processing signature in selected air masses.


2016 ◽  
Author(s):  
Anne Garnier ◽  
Noëlle A. Scott ◽  
Jacques Pelon ◽  
Raymond Armante ◽  
Laurent Crépeau ◽  
...  

Abstract. The quality of the calibrated radiances of the medium-resolution Imaging Infrared Radiometer (IIR) on-board the CALIPSO satellite is quantitatively controlled since the beginning of the mission in June 2006. Two complementary “relative” and “stand-alone” approaches are used, which are related to comparisons of measured brightness temperatures, and to model-to-observations comparisons, respectively. In both cases, IIR channels 1 (8.65 μm), 2 (10.6 μm), and 3 (12.05 μm) are paired with MODIS/Aqua “companion” channels 29, 31, and 32, respectively, as well as with SEVIRI/Meteosat companion channels IR8.7, IR10.8 and IR12, respectively. These pairs were selected before launch to meet radiometric, geometric and space-time constraints. The pre-launch studies were based on simulations and sensitivity studies using the 4A/OP radiative transfer model fed with the more than 2300 atmospheres of the climatological TIGR dataset further sorted out in five air mass types. Over the 9.5 years of operation since launch, in a semi-operational process, collocated measurements of IIR and of its companion channels have been compared at all latitudes over ocean, during day and night, and for all types of scenes in a wide range of brightness temperatures when dealing with the relative approach. The relative approach shows an excellent stability of IIR2-MODIS31 and IIR3-MODIS32 brightness temperature differences (BTD) since launch A slight trend of the IIR1-MODIS29 BTD, equal to −0.02 K/year on average over 9.5 years, is detected by the relative approach at all latitudes and all scene temperatures. For the stand-alone approach, clear sky measurements only are considered, which are directly compared with simulations using 4A/OP and collocated ERA-Interim reanalyses. The clear sky mask is derived from collocated observations from IIR and the CALIPSO lidar. Simulations for clear sky pixels in the tropics reproduce the differences between IIR1 and MODIS29 within 0.02 K, and between IIR2 and MODIS31 within 0.04 K, whereas IIR3-MODIS32 is larger than simulated by 0.26 K. The stand-alone approach indicates that the trend identified from the relative approach originates from MODIS29, whereas no trend (less than ±0.004 K/year) is evidenced for any of the IIR channels. Finally, a year-by-year seasonal bias between nighttime and daytime IIR-MODIS BTDs was found at mid-latitude in the northern hemisphere by the relative approach. It is due to a nighttime IIR bias as determined by the stand-alone approach, which originates from a calibration drift during day-to-night transitions. The largest bias is in June/July with IIR2 and IIR3 too warm by 0.4 K on average, and IIR1 too warm by 0.2 K.


2016 ◽  
Vol 16 (17) ◽  
pp. 11207-11217 ◽  
Author(s):  
Justin H. Dingle ◽  
Kennedy Vu ◽  
Roya Bahreini ◽  
Eric C. Apel ◽  
Teresa L. Campos ◽  
...  

Abstract. Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July–August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext ∕ ΔCO) were higher in aged urban air masses compared to fresh air masses by  ∼  50 %. The resulting increase in Δβext ∕ ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g−1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11–12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.


2016 ◽  
Author(s):  
Justin H. Dingle ◽  
Kennedy Vu ◽  
Roya Bahreini ◽  
Eric C. Apel ◽  
Teresa L. Campos ◽  
...  

Abstract. Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver Metropolitan Area as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) campaign during July–August 2014. An Aerodyne Cavity Attenuated Phase Shift particle light extinction monitor (CAPS-PMex) was deployed to measure dry, βext of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior under various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext/ΔCO) were significantly increased in highly aged air masses compared to fresh air masses by 50–60 %. The resulting increase in Δβext/ΔCO under highly aged air masses was accompanied by formation of secondary organic aerosols (SOA). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.83–3.30 m2 g−1, with the minimum and maximum values observed in agriculture and urban + O&G influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During Aug. 11–12, regional influence of a biomass burning event was observed, increasing the background βext by 10–15 Mm−1 and the estimated MEE and Δβext/ΔCO values in the Front Range.


2013 ◽  
Vol 13 (18) ◽  
pp. 9525-9541 ◽  
Author(s):  
F. Patadia ◽  
R. A. Kahn ◽  
J. A. Limbacher ◽  
S. P. Burton ◽  
R. A. Ferrare ◽  
...  

Abstract. Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of ≈0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.


2013 ◽  
Vol 2013 (1) ◽  
pp. 3961
Author(s):  
Haritini Tsangari ◽  
Anastasia Paschalidou ◽  
Pavlos Kassomenos ◽  
Zoi Konsoula ◽  
Stephanie Christou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document