shielding ring
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 1)

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 820 ◽  
Author(s):  
Min He ◽  
Zhifeng Zhang ◽  
Weimin Mao ◽  
Bao Li ◽  
Yuelong Bai ◽  
...  

This study presents a modified annular electromagnetic stirring (M-AEMS) melt treatment suitable for a large-volume and high-alloyed aluminum alloy. A 3D computational model coupling an electromagnetic model with a macroscopic heat and fluid-flow model was established by using Ansoft Maxwell 3D and Fluent from ANSYS workbench, and the effects of the electromagnetic shielding ring, the height of the magnet yoke, the shape of the iron core, and the internal cooling mandrel on the electromagnetic, thermal and flow fields were studied numerically. Based on the optimal technical parameters, the effectivity of the M-AEMS process by using 7075 alloy was validated experimentally. The results show that a favorable electromagnetic field distribution can be achieved by changing the magnet yoke height, the iron-core shape and the electromagnetic shielding ring, and the melt temperature of the 7075 alloy can drop rapidly to the pouring temperature by imposing the internal cooling mandrel; compared with ordinary annular electromagnetic stirring, the M-AEMS process creates a lower magnetic strength near the melt top, beneficial for stabilizing the melt surface; meanwhile, it yields a higher magnetic strength near the melt bottom, which increases the shear rate and ensures an optimal stirring effect. Therefore, M-AEMS works more efficiently because the thermal and composition fields become uniform in a shorter time, which reduces the average grain size and the composition segregation, and a more stable melt surface can be obtained during treatment, which reduces the number of air and oxide inclusions in the melt.


2001 ◽  
Author(s):  
Shigeki Hirasawa ◽  
Tadashi Suzuki ◽  
Shigenao Maruyama ◽  
Yuhei Takeuchi

Abstract To unify temperature distribution in a wafer during rapid thermal processing, we calculated the effect of the heating control conditions on temperature distributions in the wafer during heat-up and at steady state by using a program for analyzing three-dimensional radiative heat transfer. We calculated optimum monitoring positions on the wafer in order to minimize the temperature distribution in the wafer. The effects of rotating the wafer, the spacing between the wafer and the shielding ring, the number of monitoring positions, and the initial non-uniform temperature distribution were also calculated. The minimum steady temperature distribution in the wafer at the optimum condition was calculated as ±0.1 K during 100 K/s heat-up and ±0.02 K at 1273 K steady state. We also developed a rapid parallel-computation technique to find the optimum heating control conditions for the whole heating process.


Sign in / Sign up

Export Citation Format

Share Document