magnetic strength
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 35)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 11 (22) ◽  
pp. 10855
Author(s):  
Usman Inayat ◽  
Shaukat Iqbal ◽  
Tareq Manzoor ◽  
Muhammad Fahad Zia

Nanoparticles are generally used to scatter and absorb solar radiations in nanofluid-based direct solar receivers to efficiently transport and store the heat. However, solar energy absorption in nanofluid can be enhanced by using differential materials and tuning nanofluid parameter. In this regard, theoretical investigations of unsteady homogeneous Hiemenz flow of an incompressible nanofluid having copper and silver nanoparticles over a porous wedge is carried out by using optimal homotopy asymptotic method (OHAM). Hence, a semi-analytical solver is applied to the transformed system to study the significance of magnetic field along with Prandtl number. In this work, impacts of conductive radiations, heat sink/source, unsteadiness, and flow parameters have been investigated for velocity and temperature profiles of copper and silver nanoparticles-based nanofluid. The effects of magnetic strength, volume fraction of nanoparticles, thermal conductivity, and flow parameters have also been studied on the considered nanofluids.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2407
Author(s):  
Kyeongmin Hong ◽  
Minjae Choe ◽  
Seoyeon Kim ◽  
Hye-Min Lee ◽  
Byung-Joo Kim ◽  
...  

In this work we describe a soft and ultrastretchable fiber with a magnetic liquid metal (MLM) core for electrical switches used in remote magnetic actuation. MLM was prepared by removing the oxide layer on the liquid metal and subsequent mixing with magnetic iron particles. We used SEBS (poly[styrene-b-(ethylene-co-butylene)-b-styrene]) and silicone to prepare stretchable elastic fibers. Once hollow elastic fibers form, MLM was injected into the core of the fiber at ambient pressure. The fibers are soft (Young’s modulus of 1.6~4.4 MPa) and ultrastretchable (elongation at break of 600~5000%) while maintaining electrical conductivity and magnetic property due to the fluidic nature of the core. Magnetic strength of the fibers was characterized by measuring the maximum effective distance between the magnet and the fiber as a function of iron particle concentration in the MLM core and the polymeric shell. The MLM core facilitates the use of the fiber in electrical switches for remote magnetic actuation. This ultrastretchable and elastic fiber with MLM core can be used in soft robotics, and wearable and conformal electronics.


Author(s):  
Jing Chen ◽  
Yawei Wei ◽  
Haoyu Ji ◽  
Pengliang Guo ◽  
Dongjin Wan ◽  
...  

Abstract In this study, magnetic Mg/Fe hydrotalcite calcined material (M-CHT) was synthesized through co-precipitation and calcination method, and was used to effectively remove nitrate and nitrite from water. M-CHT can restore its original layered structure after the adsorption of nitrate or nitrite, and can be easily separated by the applied magnetic field. The first-order and pseudo-second-order kinetic models (R2 ≥ 0.97) can better describe the adsorption kinetic process. The equilibrium isotherm showed that the Langmuir model provided a better fit to the experimental data than the Freundlich model for nitrates and nitrites. With temperature increased from 298 to 308 K, the maximum adsorption capacity obtained by the Langmuir model increased from 10.60 to 16.90 mg-N/g for nitrate and 7.89 to 14.28 mg-N/g for nitrite, respectively. The adverse effect of coexisting anions ranked in the order of ClO4− > Cl− > SO42− > F− > CO32− > PO43−. The actual Fe2+/Fe3+ value of M-CHT (0.56) is nearly consistent with the theoretical value of 0.5, and the saturation magnetic strength value of M-CHT is 9.15 emu/g, greatly contributing to the solid-liquid separation. Overall, M-CHT with features of magnetic properties and satisfactory adsorption capacity exhibits the greatly promising for application in wastewater purification.


Author(s):  
Khairul Anwar Mohamad Said ◽  
A.F. Ismail ◽  
A.K. Zulhairun ◽  
M.S. Abdullah ◽  
M. Ariff Azali ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Rahmat Basuki ◽  
Bambang Rusdiarso ◽  
Sri Juari Santosa ◽  
Dwi Siswanta

Magnetite-functionalized horse dung humic acid (HDHA) has been successfully prepared by the coprecipitation method, and the as-prepared adsorbent (MHDHA) has been applied as an easy-handling adsorbent for toxic Pb(II) in artificial wastewater. The MHDHA was characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), and vibrating sample magnetometer (VSM). The FT-IR study showed that the MHDHA had the characteristics peaks of HA and Fe-O stretching. The XRD analysis revealed that the MHDHA had the 2 θ characteristic for magnetite. The TEM image and EDX analysis exhibited that the MHDHA with an average size of ∼14 nm was partially aggregated and contained ( w / w ) 9.89% carbon, 2.89% nitrogen, and 32.74% oxygen based on functional groups of HDHA. The stability improvement of MHDHA was showed by decreasing HDHA dissolved from 95% to less than 30% at pH 12 after magnetite functionalization. The post-adsorption handling improvement was evidenced by easy and quick retraction by an external magnet with a 62.95 emu/g magnetic strength value. The adsorption capacities were influenced by the pH and ionic strength, whilst the adsorption rates were well simulated by the Ho pseudo-second-order model. The removal uptake of Pb(II) ions increased when the initial concentration was increased and fitted well with the Langmuir isotherm model when the monolayer adsorption capacity was 2.78 × 10 − 4   mol / g (equal to 57.64 mg/g). The value of Dubinin-Radushkevich adsorption energy ( E D − R ) found in this study was 14.78 kJ/mol, which implied that ion exchange is the main mechanism involved in the adsorption process. The regeneration studies of MHDHA show that there was no significant change in composition, morphology, crystallinity, and functional group after five consecutive cycles of the adsorption-desorption process.


Author(s):  
Mohamed R Eid ◽  
F Mabood

The essence of the present investigation is to reveal the hydrothermal variations of viscoelastic nanofluid flow in a porous medium over a stretchable surface. A higher-order chemical reaction is incorporated with thermophoresis and Brownian motion. Similarity conversions reduce the resulting equations into their dimensionless form and then solved using Runge-Kutta-Fehlberg (RKF) based shooting procedure. The effects of underlying factors on the flow are discussed through various graphs and tables. Computational results for noteworthy skin friction and heat and mass transport are presented and reviewed with sensible judgment. The study reveals that the fluid velocity reduces with incremental values of the viscoelastic parameter [Formula: see text] and magnetic strength. The temperature reduces for the suction parameter with the existence of stretchable but enhances with thermophoresis and Brownian motion effects. Heat transfer rate amplifies for [Formula: see text] but declines for [Formula: see text]. Mass transfer rate increases with the increase in Brownian parameter and Schmidt number. A comparative analysis shows a better agreement with previous results in limiting scenarios.


2021 ◽  
Vol 47 (2) ◽  
pp. 432-441
Author(s):  
Anthony R Hassan ◽  
Olufemi W Lawal ◽  
Funmilayo F Amurawaye

This investigation is to consider the impact of a temperature-dependent variable viscosity of a reactive hydromagnetic Couette fluid flowing within parallel plates. The variable property of the fluid viscosity is thought to be an exponential relation of temperature under the impact of magnetic strength. The differential equations controlling the smooth movement of fluid and energy transfer are modeled and solved by using the series solution of modified Adomian decomposition technique (mADM). The outcomes are shown in tables and graphs for different estimations of thermophysical properties present in the flow regime together with the rate of entropy generation and irreversibility distribution outcome. Keywords: Reactive fluids, Couette Flow, variable viscosity, hydromagnetic and modified Adomian decomposition method (mADM).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nehad Ali Shah ◽  
I. L. Animasaun ◽  
Jae Dong Chung ◽  
Abderrahim Wakif ◽  
F. I. Alao ◽  
...  

AbstractThe performance of copper selenide and effectiveness of chemical catalytic reactors are dependent on an inclined magnetic field, the nature of the chemical reaction, introduction of space heat source, changes in both distributions of temperature and concentration of nanofluids. This report presents the significance of increasing radius of nanoparticles, energy flux due to the concentration gradient, and mass flux due to the temperature gradient in the dynamics of the fluid subject to inclined magnetic strength is presented. The non-dimensionalization and parameterization of the dimensional governing equation were obtained by introducing suitable similarity variables. Thereafter, the numerical solutions were obtained through shooting techniques together with 4th order Runge–Kutta Scheme and MATLAB in-built package. It was concluded that at all the levels of energy flux due to concentration gradient, reduction in the viscosity of water-based nanofluid due to a higher radius of copper nanoparticles causes an enhancement of the velocity. The emergence of both energy flux and mass flux due to gradients in concentration and temperature affect the distribution of temperature and concentration at the free stream.


Sign in / Sign up

Export Citation Format

Share Document