snake range
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 0)

Geosphere ◽  
2021 ◽  
Author(s):  
Nolan R. Blackford ◽  
Sean P. Long ◽  
Austin Stout ◽  
David W. Rodgers ◽  
C.M. Cooper ◽  
...  

Crustal temperature conditions can strongly influence the evolution of deformation during orogenesis. The Sevier hinterland plateau in Nevada and western Utah (“Nevadaplano”) experienced a Late Cretaceous episode of shallow-crustal metamorphism and granitic magmatism. Here, we investigate the thermal history of the Nevadaplano by measuring peak thermal field gradients attained in the upper 10–20 km of the crust along an east-west transect through nine ranges in eastern Nevada and western Utah, by integrating Raman spectroscopy of carbonaceous material thermometry and published conodont alteration indices with reconstructed cross sections. Thermal field gradients of 29 ± 3 °C/km were obtained in the House and Confusion Ranges in westernmost Utah. The Deep Creek, Schell Creek, and Egan Ranges in easternmost Nevada yielded elevated gradients of 49 ± 7 °C/km, 36 ± 3 °C/km, and 32 ± 6 °C/km, respectively. Moving westward, the White Pine, Butte, Pancake, and Fish Creek Ranges exhibit gradients typically between ~20–30 °C/km. The elevated thermal gradients in easternmost Nevada are interpreted to have been attained during ca. 70–90 Ma granitic magmatism and metamorphism and imply possible partial melting at ~18 km depths. Our data are compatible with published interpretations of Late Cretaceous lithospheric mantle delamination under the Sevier hinterland, which triggered lower-crustal anatexis and the resulting rise of granitic melts. The lack of evidence for structures that could have accommodated deep burial of rocks in the nearby Northern Snake Range metamorphic core complex, combined with thermal gradients from adjacent ranges that are ~1.5–3 times higher than those implied by thermobarometry in the Northern Snake Range, further highlights the debate over possible tectonic overpressure in Cordilleran core complexes. Cross-section retro-deformation defines 73.4 ± 4.6 km (76 ± 8%) of extension across eastern Nevada and 15 km of shortening in the Eastern Nevada fold belt.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-24
Author(s):  
Andrew V. Zuza ◽  
Charles H. Thorman ◽  
Christopher D. Henry ◽  
Drew A. Levy ◽  
Seth Dee ◽  
...  

Abstract Mesozoic crustal shortening in the North American Cordillera’s hinterland was related to the construction of the Nevadaplano orogenic plateau. Petrologic and geochemical proxies in Cordilleran core complexes suggest substantial Late Cretaceous crustal thickening during plateau construction. In eastern Nevada, geobarometry from the Snake Range and Ruby Mountains-East Humboldt Range-Wood Hills-Pequop Mountains (REWP) core complexes suggests that the ~10–12 km thick Neoproterozoic-Triassic passive-margin sequence was buried to great depths (>30 km) during Mesozoic shortening and was later exhumed to the surface via high-magnitude Cenozoic extension. Deep regional burial is commonly reconciled with structural models involving cryptic thrust sheets, such as the hypothesized Windermere thrust in the REWP. We test the viability of deep thrust burial by examining the least-deformed part of the REWP in the Pequop Mountains. Observations include a compilation of new and published peak temperature estimates (n=60) spanning the Neoproterozoic-Triassic strata, documentation of critical field relationships that constrain deformation style and timing, and new 40Ar/39Ar ages. This evidence refutes models of deep regional thrust burial, including (1) recognition that most contractional structures in the Pequop Mountains formed in the Jurassic, not Cretaceous, and (2) peak temperature constraints and field relationships are inconsistent with deep burial. Jurassic deformation recorded here correlates with coeval structures spanning western Nevada to central Utah, which highlights that Middle-Late Jurassic shortening was significant in the Cordilleran hinterland. These observations challenge commonly held views for the Mesozoic-early Cenozoic evolution of the REWP and Cordilleran hinterland, including the timing of contractional strain, temporal evolution of plateau growth, and initial conditions for high-magnitude Cenozoic extension. The long-standing differences between peak-pressure estimates and field relationships in Nevadan core complexes may reflect tectonic overpressure.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 900
Author(s):  
Mackenzie Kilpatrick ◽  
Franco Biondi

Information on wildfire impacts and ecosystem responses is relatively sparse in the Great Basin of North America, where subalpine ecosystems are generally dominated by five-needle pines. We analyzed existing vegetation, with an emphasis on regeneration following the year 2000 Phillips Ranch Fire, at a sky-island site in the Snake Range of eastern Nevada. Our main objective was to compare bristlecone pine (Pinus longaeva; PILO) post-fire establishment and survival to that of the co-occurring dominant conifers limber pine (Pinus flexilis; PIFL) and Engelmann spruce (Picea engelmannii; PIEN) in connection with site characteristics. Field data were collected in 40 circular 0.1 ha plots (17.8 m radius) randomly located using GIS so that half of them were inside (“burned”) and half were outside (“unburned”) the 2000 fire boundary. While evidence of previous burns was also found, we focused on impacts from the Phillips Ranch Fire. Mean total basal area, including live and dead stems, was not significantly different between plots inside the burn and plots outside the fire perimeter, but the live basal area was significantly less in the former than in the latter. Wildfire impacts did not limit regeneration, and indeed bristlecone seedlings and saplings were more abundant in plots inside the 2000 fire perimeter than in those outside of it. PILO regeneration, especially saplings, was more abundant than PIFL and PCEN combined, indicating that PILO can competitively regenerate under modern climatic conditions. Surviving PILO regeneration in burned plots was also taller than that of PIFL. By contrast, PCEN was nearly absent in the plots that had been impacted by fire. Additional research should explicitly address how climatic changes and disturbance processes may interact in shaping future vegetation dynamics.


2019 ◽  
Vol 1 (1) ◽  
pp. 36-43
Author(s):  
Devi Octaviani ◽  
Mufti Sudibyo ◽  
Hanifah Mutia Z.N Amrul ◽  
Jamilah Nasution

The purpose of this research is to know what kind of snake and to find out the condition of the environment where he found the type of snake in Bukit Lawang, Bahorok Sub-district, Langkat regency of North Sumatera in December 2017 until January 2018. Sampling with exploratory method to all areas with potential snake. The results found 8 types of snakes grouped into 4 families, 3 types of columbridae 1 type of pareidae, 1 type of viperidae, and 1 type of lamprophiidae. Environmental temperature found at snake range of 25 ° C 32 ° C Chrysopelea pelia and Boiga dendrophila found in pH 7.0 Based on IUCN Red List and CITES Appendix snake found in Bukit Lawang Bahorok District Langkat Regency into Least Concern ( LC), and does not enter into appendix III, nor III in CITES, is not protected or animals threatened to exist until it can lead to extinction. The snake is a snake that spread widely and not endemic.


Sign in / Sign up

Export Citation Format

Share Document