metastable systems
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
Margarita A. Nikishina ◽  
Dmitri V. Alexandrov

When describing the growth of crystal ensembles from metastable solutions or melts, a significant deviation from a spherical shape is often observed. Experimental data show that the shape of growing crystals can often be considered ellipsoidal. The new theoretical models describing the transient nucleation of ellipsoidal particles and their growth with and without fluctuating rates at the intermediate stage of bulk phase transitions in metastable systems are considered. The nonlinear transport (diffusivity) of ellipsoidal crystals in the space of their volumes is taken into account in the Fokker–Planck equation allowing for fluctuating growth rates. The complete analytical solutions of integro-differential models of kinetic and balance equations are found and analysed. Our solutions show that the desupercooling dynamics is several times faster for ellipsoidal crystals as compared to spherical particles. In addition, the crystal-volume distribution function is lower and shifted to larger particle volumes when considering the growth of ellipsoidal crystals. What is more, this function is monotonically increasing to the maximum crystal size in the absence of fluctuations and is a bell-shaped curve when such fluctuations are taken into account. This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.


2021 ◽  
Vol 94 (1) ◽  
Author(s):  
Paolo Sibani ◽  
Stefan Boettcher ◽  
Henrik Jeldtoft Jensen

Abstract Record Dynamics (RD) deals with complex systems evolving through a sequence of metastable stages. These are macroscopically distinguishable and appear stationary, except for the sudden and rapid changes, called quakes, which induce the transitions from one stage to the next. This phenomenology is well known in physics as “physical aging”, but from the vantage point of RD, the evolution of a class of systems of physical, biological, and cultural origin is rooted in a hierarchically structured configuration space and can, therefore, be analyzed by similar statistical tools. This colloquium paper strives to present in a coherent fashion methods and ideas that have gradually evolved over time. To this end, it first describes the differences and similarities between RD and two widespread paradigms of complex dynamics, Self-Organized Criticality and Continuous Time Random Walks. It then outlines the Poissonian nature of records events in white noise time-series, and connects it to the statistics of quakes in metastable hierarchical systems, arguing that the relaxation effects of quakes can generally be described by power laws unrelated to criticality. Several different applications of RD have been developed over the years. Some of these are described, showing the basic RD hypothesis and how the log-time homogeneity of quake dynamics, can be empirically verified in a given context. The discussion summarizes the paper and briefly mentions applications not discussed in detail. Finally, the outlook points to possible improvements and to new areas of research where RD could be of use. Graphic Abstract


2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Andreas Bittracher ◽  
Stefan Klus ◽  
Boumediene Hamzi ◽  
Péter Koltai ◽  
Christof Schütte

AbstractWe present a novel kernel-based machine learning algorithm for identifying the low-dimensional geometry of the effective dynamics of high-dimensional multiscale stochastic systems. Recently, the authors developed a mathematical framework for the computation of optimal reaction coordinates of such systems that is based on learning a parameterization of a low-dimensional transition manifold in a certain function space. In this article, we enhance this approach by embedding and learning this transition manifold in a reproducing kernel Hilbert space, exploiting the favorable properties of kernel embeddings. Under mild assumptions on the kernel, the manifold structure is shown to be preserved under the embedding, and distortion bounds can be derived. This leads to a more robust and more efficient algorithm compared to the previous parameterization approaches.


2018 ◽  
Vol 227 (3-4) ◽  
pp. 379-420 ◽  
Author(s):  
Bernardo Spagnolo ◽  
Angelo Carollo ◽  
Davide Valenti

2017 ◽  
Vol 28 (2) ◽  
pp. 471-512 ◽  
Author(s):  
Andreas Bittracher ◽  
Péter Koltai ◽  
Stefan Klus ◽  
Ralf Banisch ◽  
Michael Dellnitz ◽  
...  
Keyword(s):  

2016 ◽  
Vol 16 (3) ◽  
pp. 59-62 ◽  
Author(s):  
D. Medyński ◽  
A. Janus

Abstract In the paper, a relationship between chemical composition of Ni-Mn-Cu cast iron and its structure, hardness and corrosion resistance is determined. The examinations showed a decrease of thermodynamic stability of austenite together with decreasing nickel equivalent value, in cast iron solidifying according to both the stable and the metastable systems. As a result of increasing degree of austenite transformation, the created martensite caused a significant hardness increase, accompanied by small decline of corrosion resistance. It was found at the same time that solidification way of the alloy and its matrix structure affect corrosion resistance to a much smaller extent than the nickel equivalent value, in particular concentration of elements with high electrochemical potential.


2016 ◽  
Vol 145 (2) ◽  
pp. 024102 ◽  
Author(s):  
Enrico Guarnera ◽  
Eric Vanden-Eijnden

Sign in / Sign up

Export Citation Format

Share Document