scholarly journals Effect of Chemical Composition on Structure and Corrosion Resistance of Ni-Mn-Cu Cast Iron

2016 ◽  
Vol 16 (3) ◽  
pp. 59-62 ◽  
Author(s):  
D. Medyński ◽  
A. Janus

Abstract In the paper, a relationship between chemical composition of Ni-Mn-Cu cast iron and its structure, hardness and corrosion resistance is determined. The examinations showed a decrease of thermodynamic stability of austenite together with decreasing nickel equivalent value, in cast iron solidifying according to both the stable and the metastable systems. As a result of increasing degree of austenite transformation, the created martensite caused a significant hardness increase, accompanied by small decline of corrosion resistance. It was found at the same time that solidification way of the alloy and its matrix structure affect corrosion resistance to a much smaller extent than the nickel equivalent value, in particular concentration of elements with high electrochemical potential.

2013 ◽  
Vol 13 (2) ◽  
pp. 53-58 ◽  
Author(s):  
A. Janus ◽  
A. Kurzawa

Abstract Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-Mn- Cu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS), microscopic observations (optical and scanning microscopy, image analyser), as well as Brinell hardness and HV microhardness measurements of structural components.


2019 ◽  
Vol 63 (1) ◽  
pp. 54-64
Author(s):  
P. Pokorný ◽  
M. Hrabánek ◽  
D. Dvorský ◽  
L. Turek

Abstract The corrosion survey of the supporting steel/cast iron structure of the palm greenhouse included not only the characteristics of the used metal materials (microstructure, chemical composition), but also the current state of the system of corrosion protection (thickness and stratigraphy of the applied coating system). From a static point of view, the palm greenhouse design meets the applicable standards if two damaged cast iron columns are repaired. A new top coat with extended corrosion resistance is required on the surface of individual metal profiles.


2016 ◽  
Vol 16 (3) ◽  
pp. 63-66 ◽  
Author(s):  
D. Medyński ◽  
A. Janus

Abstract Within the presented work, the effect of austenite transformation on abrasive wear as well as on rate and nature of corrosive destruction of spheroidal Ni-Mn-Cu cast iron was determined. Cast iron contained: 3.1÷3.4 %C, 2.1÷2.3 %Si, 2.3÷3.3 %Mn, 2.3÷2.5 %Cu and 4.8÷9.3 %Ni. At a higher degree of austenite transformation in the alloys with nickel equivalent below 16.0%, abrasive wear resistance was significantly higher. Examinations of the corrosion resistance were carried out with the use of gravimetric and potentiodynamic method. It was shown that higher degree of austenite transformation results in significantly higher abrasive wear resistance and slightly higher corrosion rate, as determined by the gravimetric method. However, results of potentiodynamic examinations showed creation of a smaller number of deep pinholes, which is a favourable phenomenon from the viewpoint of corrosion resistance.


2017 ◽  
Vol 17 (3) ◽  
pp. 85-90 ◽  
Author(s):  
D. Medyński ◽  
A. Janus ◽  
J. Chęcmanowski

Abstract Within the presented research, effect of annealing on nature of corrosion damages of medium-nickel austenitic nodular cast iron castings, containing 5.5% to 10.3% Ni, was determined. Concentration of nickel, lower than in the Ni-Resist cast iron, was compensated with additions of other austenite-stabilising elements (manganese and copper). In consequence, raw castings with austenitic matrix structure and gravimetrically measured corrosion resistance increasing along with nickel equivalent value EquNi were obtained. Annealing of raw castings, aimed at obtaining nearly equilibrium structures, led to partial austenite-to-martensite transformation in the alloys with EquNi value of ca. 16%. However, corrosion resistance of the annealed alloys did not decrease in comparison to raw castings. Annealing of castings with EquNi value above 18% did not cause any structural changes, but resulted in higher corrosion resistance demonstrated by smaller depth of corrosion pits.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4074
Author(s):  
Felix Großwendt ◽  
Louis Becker ◽  
Arne Röttger ◽  
Abootorab Baqerzadeh Chehreh ◽  
Anna Luise Strauch ◽  
...  

This work aims to show the impact of the allowed chemical composition range of AISI 316L stainless steel on its processability in additive manufacturing and on the resulting part properties. ASTM A276 allows the chromium and nickel contents in 316L stainless steel to be set between 16 and 18 mass%, respectively, 10 and 14 mass%. Nevertheless, the allowed compositional range impacts the microstructure formation in additive manufacturing and thus the properties of the manufactured components. Therefore, this influence is analyzed using three different starting powders. Two starting powders are laboratory alloys, one containing the maximum allowed chromium content and the other one containing the maximum nickel content. The third material is a commercial powder with the chemical composition set in the middle ground of the allowed compositional range. The materials were processed by laser-based powder bed fusion (PBF-LB/M). The powder characteristics, the microstructure and defect formation, the corrosion resistance, and the mechanical properties were investigated as a function of the chemical composition of the powders used. As a main result, solid-state cracking could be observed in samples additively manufactured from the starting powder containing the maximum nickel content. This is related to a fully austenitic solidification, which occurs because of the low chromium to nickel equivalent ratio. These cracks reduce the corrosion resistance as well as the elongation at fracture of the additively manufactured material that possesses a low chromium to nickel equivalent ratio of 1.0. A limitation of the nickel equivalent of the 316L type steel is suggested for PBF-LB/M production. Based on the knowledge obtained, a more detailed specification of the chemical composition of the type 316L stainless steel is recommended so that this steel can be PBF-LB/M processed to defect-free components with the desired mechanical and chemical properties.


Alloy Digest ◽  
1973 ◽  
Vol 22 (2) ◽  

Abstract MEEHANITE GF-20 is a gray cast iron designed principally for high machinability and is used where strength is not an important factor. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: CI-39. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CORROSIRON is a high silicon corrosion resistant cast iron containing 14.5% Silicon. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as machining and joining. Filing Code: CI-3. Producer or source: Pacific Foundry Company Ltd.


Alloy Digest ◽  
1980 ◽  
Vol 29 (3) ◽  

Abstract AMPCOLOY 570 is a cast copper-nickel-aluminum-cobalt-iron alloy specially developed for applications involving severe stresses and high temperatures, such as glass-making molds and plate-glass rolls. It is significantly superior to cast iron which has been commonly used for glass-making molds. Good foundry techniques will yield high-quality castings of Ampcoloy 570 in a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-392. Producer or source: Ampco Metal Inc..


Alloy Digest ◽  
1959 ◽  
Vol 8 (3) ◽  

Abstract PEARLITIC MALLEABLE IRON is a high strength cast iron recommended for dependable service, strength and machinability in highly stressed parts at work in mobile and stationary mechanisms. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: CI-26. Producer or source: Albian Malleable Iron Company.


Sign in / Sign up

Export Citation Format

Share Document