binge ethanol exposure
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Victoria Macht ◽  
Ryan Vetreno ◽  
Natalie Elchert ◽  
Fulton Crews

Abstract Background Binge ethanol exposure during adolescence reduces hippocampal neurogenesis, a reduction which persists throughout adulthood despite abstinence. This loss of neurogenesis, indicated by reduced doublecortin+ immunoreactivity (DCX+IR), is paralleled by an increase in hippocampal proinflammatory signaling cascades. As galantamine, a cholinesterase inhibitor, has anti-inflammatory actions, we tested the hypothesis that galantamine would prevent (study 1) or restore (study 2) AIE induction of proinflammatory signals within the hippocampus as well as AIE-induced loss of hippocampal neurogenesis. Methods Galantamine (4 mg/kg) or vehicle (saline) was administered to Wistar rats during adolescent intermittent ethanol (AIE; 5.0 g/kg ethanol, 2 days on/2 days off, postnatal day [P] 25-54) (study 1, prevention) or after AIE during abstinent maturation to adulthood (study 2, restoration). Results Results indicate AIE reduced DCX+IR and induced cleaved caspase3 (Casp3) in DCX-expressing immature neurons. Excitingly, AIE induction of activated Casp3 in DCX-expressing neurons is both prevented and reversed by galantamine treatment, which also resulted in prevention and restoration of neurogenesis (DCX+IR). Similarly, galantamine prevented and/or reversed AIE induction of proinflammatory markers, including the chemokine (C-C motif) ligand 2 (CCL2), cyclooxygenase-2 (COX-2), and high mobility group box 1 (HMGB1) protein, suggesting that AIE induction of proinflammatory signaling mediates both cell death cascades and hippocampal neurogenesis. Interestingly, galantamine treatment increased Ki67+IR generally as well as increased pan-Trk expression specifically in AIE-treated rats but failed to reverse AIE induction of NADPH-oxidase (gp91phox). Conclusions Collectively, our studies suggest that (1) loss of neurogenesis after AIE is mediated by persistent induction of proinflammatory cascades which drive activation of cell death machinery in immature neurons, and (2) galantamine can prevent and restore AIE disruptions in the hippocampal environmental milieu to then prevent and restore AIE-mediated loss of neurogenesis.


2020 ◽  
Vol 46 (2) ◽  
pp. 368-379
Author(s):  
Natalie M. Zahr ◽  
Edith V. Sullivan ◽  
Kilian M. Pohl ◽  
Adolf Pfefferbaum

Author(s):  
Antoniette M. Maldonado-Devincci ◽  
Joseph G. Makdisi ◽  
Andrea M. Hill ◽  
Renee C. Waters ◽  
Nzia I. Hall ◽  
...  

AbstractWith alcohol readily accessible to adolescents, its consumption leads to many adverse effects, including impaired learning, attention, and behavior. Adolescents report higher rates of binge drinking compared to adults. Adolescents are also more prone to substance use disorder during adulthood due to physiological changes during the adolescent developmental period. We used C57BL/6J male and female mice to investigate the long-lasting impact of binge ethanol exposure during adolescence on voluntary ethanol intake and open field behavior during later adolescence and in young adulthood. The present set of experiments were divided into four stages: (1) chronic intermittent vapor inhalation exposure, (2) abstinence, (3) voluntary ethanol intake, and (4) open field behavioral testing. During adolescence, male and female mice were exposed to air or ethanol using an intermittent vapor inhalation with repeated binge pattern ethanol exposure from postnatal day (PND) 28–42. Following this, mice underwent abstinence during late adolescence from PND 43–49 (Experiment 1) or PND 43–69 (Experiment 2). Beginning on PND 49–76 (Experiment 1) or PND 70–97 (Experiment 2), mice were assessed for intermittent voluntary ethanol consumption using a two-bottle drinking procedure over 28 days. Male mice that were exposed to ethanol during adolescence showed increased ethanol consumption during later adolescence (Experiment 1) and in emerging adulthood (Experiment 2), while the female mice showed decreased ethanol consumption. These data demonstrate a sexually divergent shift in ethanol consumption following binge ethanol exposure during adolescence and differences in open field behavior. These data highlight sex-dependent vulnerability to developing substance use disorders in adulthood.Significance StatementCurrently, it is vital to determine the sex-dependent impact of binge alcohol exposure during adolescence, given that until recently females have largely been ignored. Here we show that adolescent male mice that are exposed to binge ethanol during adolescence show long-term changes in behavior in adulthood. In contrast, female mice show a transient decrease in ethanol consumption in adulthood and decreased motor activity spent in the center zone of the open field test. Male mice appear to be more susceptible to the long-term changes in ethanol consumption following binge ethanol exposure during adolescence.


2019 ◽  
Vol 186 ◽  
pp. 172790 ◽  
Author(s):  
Henrique Teza Bernardo ◽  
Jotele Fontana Agostini ◽  
Helena Cristina Zuehl Dal Toé ◽  
Karine Medeiros Vieira ◽  
Samira Leila Baldin ◽  
...  

2019 ◽  
Vol 372 ◽  
pp. 112022 ◽  
Author(s):  
Verónica Balaszczuk ◽  
Juan Agustín Salguero ◽  
Ruth Noelia Villarreal ◽  
Rocio Gala Scaramuzza ◽  
Santiago Mendez ◽  
...  

2019 ◽  
Vol 18 (9) ◽  
pp. 3492-3502 ◽  
Author(s):  
Phillip Starski ◽  
Lee Peyton ◽  
Alfredo Oliveros ◽  
Carrie J. Heppelmann ◽  
Surendra Dasari ◽  
...  

2018 ◽  
Vol 356 ◽  
pp. 172-181 ◽  
Author(s):  
Yongchao Wang ◽  
Xin Wang ◽  
Hui Li ◽  
Mei Xu ◽  
Jacqueline Frank ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
B. Glueck ◽  
Y. Han ◽  
G. A. M. Cresci

Excessive ethanol consumption causes adverse effects and contributes to organ dysfunction. Ethanol metabolism triggers oxidative stress, altered immune function, and gut dysbiosis. The gut microbiome is known to contribute to the maintenance of intestinal homeostasis, and disturbances are associated with pathology. A consequence of gut dysbiosis is also alterations in its metabolic and fermentation byproducts. The gut microbiota ferments undigested dietary polysaccharides to yield short-chain fatty acids, predominantly acetate, propionate, and butyrate. Butyrate has many biological mechanisms of action including anti-inflammatory and immunoprotective effects, and its depletion is associated with intestinal injury. We previously showed that butyrate protects gut-liver injury during ethanol exposure. While the intestine is the largest immune organ in the body, little is known regarding the effects of ethanol on intestinal immune function. This work is aimed at investigating the effects of butyrate supplementation, in the form of the structured triglyceride tributyrin, on intestinal innate immune responses and oxidative stress following chronic-binge ethanol exposure in mice. Our work suggests that tributyrin supplementation preserved immune responses and reduced oxidative stress in the proximal colon during chronic-binge ethanol exposure. Our results also indicate a possible involvement of tributyrin in maintaining the integrity of intestinal villi vasculature disrupted by chronic-binge ethanol exposure.


Sign in / Sign up

Export Citation Format

Share Document