imprinting disorder
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Fenxia Li ◽  
Siping Liu ◽  
Bei Jia ◽  
Ruifeng Wu ◽  
Qingxian Chang

The Kagami–Ogata syndrome (KOS) is a rare imprinting disorder with a distinct clinical phenotype. In KOS, polyhydramnios is associated with a small bell-shaped thorax and coat-hanger ribs. The genetic etiology of KOS includes paternal uniparental disomy 14 [upd(14)pat], epimutations, and microdeletions affecting the maternally derived imprinted region of chromosome 14q32.2. More than 77 cases of KOS have been reported; however, only one mosaic upd(14)pat case has been reported. Here we report a second mosaic upd(14)pat case. The prognosis of upd(14)pat patients is poor because of severe respiratory insufficiency. We summarized prenatal ultrasound findings of KOS to raise awareness of this condition for possible diagnosis of KOS prenatally when polyhydramnios combination with a small bell-shaped thorax and other related features are first observed. Prenatal diagnosis using methylation-specific multiplex ligation-dependent probe amplification (MLPA) or a single-nucleotide polymorphism-based microarray analysis is recommended.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1214
Author(s):  
Zahra Anvar ◽  
Imen Chakchouk ◽  
Hannah Demond ◽  
Momal Sharif ◽  
Gavin Kelsey ◽  
...  

Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these ‘imprinted’ genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in ‘molar’ pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marina Caputo ◽  
Tommaso Daffara ◽  
Simonetta Bellone ◽  
Valentina Mancioppi ◽  
Paolo Marzullo ◽  
...  

Genetic obesity, including syndromic and non-syndromic forms, represents a minority of cases compared to essential obesity but gene dysregulations lead to complex clinical conditions that make their management particularly difficult. Among them, Beckwith-Wiedemann syndrome (BWS) is a multisystem human genomic imprinting disorder characterized by overgrowth. We describe the first case of liraglutide treatment in an 18-year-old boy patient affected by BWS complicated by macroglossia, cryptorchidism, nephroblastoma, organomegaly, microscopic lymphocytic colitis, pharmacologically treated arterial hypertension, obesity, and obstructive sleep apnea syndrome. He presented a normal cognitive development. Body mass index at the time of first transition visit in the adult endocrinology department at the age of 18-years-old was 40.6 kg/m2 without glucose metabolism impairment. Lifestyle interventions failed because of poor compliance. During 20 months of 3.0 mg liraglutide treatment, a weight loss of 19 kg (−13.3%) and BMI reduction of 6.8 points were registered without side effects. To date, liraglutide treatment was effective on obesity in 7 subjects with Prader Willy Syndrome and 14 with melanocortin-4 receptor mutations. The efficacy of liraglutide in BWS could be related to a crosstalk among glucagon-like peptide (GLP)-1 system, mechanisms related to the cyclin-dependent kinase inhibitor 1C (CDKN1C), and dopamine mesolimbic circuit. Clinical trials aiming at a tailored medicine in genetic obesity are needed.


2021 ◽  
pp. jmedgenet-2021-107699
Author(s):  
Ahmed S N Alhendi ◽  
Derek Lim ◽  
Shane McKee ◽  
Meriel McEntagart ◽  
Katriona Tatton-Brown ◽  
...  

BackgroundSilver-Russell syndrome (SRS) is an imprinting disorder characterised by prenatal and postnatal growth restriction, but its clinical features are non-specific and its differential diagnosis is broad. Known molecular causes of SRS include imprinting disturbance, single nucleotide variant (SNV), CNV or UPD affecting several genes; however, up to 40% of individuals with a clinical diagnosis of SRS currently receive no positive molecular diagnosis.MethodsTo determine whether whole-genome sequencing (WGS) could uncover pathogenic variants missed by current molecular testing, we analysed data of 72 participants recruited to the 100,000 Genomes Project within the clinical category of SRS.ResultsIn 20 participants (27% of the cohort) we identified genetic variants plausibly accounting for SRS. Coding SNVs were identified in genes including CDKN1C, IGF2, IGF1R and ORC1. Maternal-effect variants were found in mothers of five participants, including two participants with imprinting disturbance and one with multilocus imprinting disorder. Two regions of homozygosity were suggestive of UPD involving imprinted regions implicated in SRS and Temple syndrome, and three plausibly pathogenic CNVs were found, including a paternal deletion of PLAGL1. In 48 participants with no plausible pathogenic variant, unbiased analysis of SNVs detected a potential association with STX4.ConclusionWGS analysis can detect UPD, CNV and SNV and is potentially a valuable addition to diagnosis of SRS and related growth-restricting disorders.


2021 ◽  
pp. jmedgenet-2020-107674
Author(s):  
Yue Huang ◽  
Katheryn Grand ◽  
Virginia Kimonis ◽  
Merlin G Butler ◽  
Suparna Jain ◽  
...  

BackgroundPrader-Willi syndrome (PWS) is an imprinting disorder caused by the absence of paternal expressed genes in the Prader-Willi critical region (PWCR) on chromosome 15q11.2-q13. Three molecular mechanisms have been known to cause PWS, including a deletion in the PWCR, uniparental disomy 15 and imprinting defects.ResultsWe report the first case of PWS associated with a single-nucleotide SNRPN variant in a 10-year-old girl presenting with clinical features consistent with PWS, including infantile hypotonia and feeding difficulty, developmental delay with cognitive impairment, excessive eating with central obesity, sleep disturbances, skin picking and related behaviour issues. Whole-exome sequencing revealed a de novo mosaic nonsense variant of the SNRPN gene (c.73C>T, p.R25X) in 10% of DNA isolated from buccal cells and 19% of DNA from patient-derived lymphoblast cells. DNA methylation study did not detect an abnormal methylation pattern in the SNRPN locus. Parental origin studies showed a paternal source of an intronic single-nucleotide polymorphism within the locus in proximity to the SNRPN variant.ConclusionsThis is the first report that provides evidence of a de novo point mutation of paternal origin in SNRPN as a new disease-causing mechanism for PWS. This finding suggests that gene sequencing should be considered as part of the diagnostic workup in patients with clinical suspicion of PWS.


2021 ◽  
Vol 24 (5) ◽  
pp. 138-140
Author(s):  
Sara Dal Bo ◽  
Claudia Muratori ◽  
Chiara Nardini ◽  
Ilaria Donati ◽  
Anna Maria Magistà ◽  
...  

Temple syndrome is a rare imprinting disorder mainly due to maternal uniparental disomy of the chromosome 14. It represents the main differential diagnosis of Silver-Russell and Prader-Willi syndrome. This syndrome is characterized by growth retardation, hypotonia, difficult feeding, development delay and precocious puberty. The absence of congenital pathognomonic malformations and universally recognized screening methodologies make this pathology be underdiagnosed, so the analysis of 14q32 should be evaluated in all cases of intrauterine growth restriction, hypotonia and neonatal feeding difficulties. It should also be considered in cases of unexplained early puberty associated with poor stature growth. The paper presents the case of a girl with the final diagnosis of Temple syndrome, with an initial picture of intrauterine growth retardation, axial hypotonia and feeding difficulties. The initial diagnostic suspicion was a Silver-Russell syndrome.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 706
Author(s):  
Angela Sparago ◽  
Flavia Cerrato ◽  
Laura Pignata ◽  
Francisco Cammarata-Scalisi ◽  
Livia Garavelli ◽  
...  

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder characterized by prenatal and/or postnatal overgrowth, organomegaly, abdominal wall defects and tumor predisposition. CDKN1C is a maternally expressed gene of the 11p15.5 chromosomal region and is regulated by the imprinting control region IC2. It negatively controls cellular proliferation, and its expression or activity are frequently reduced in BWS. In particular, loss of IC2 methylation is associated with CDKN1C silencing in the majority of sporadic BWS cases, and maternally inherited loss-of-function variants of CDKN1C are the most frequent molecular defects of familial BWS. We have identified, using Sanger sequencing, novel CDKN1C variants in three families with recurrent cases of BWS, and a previously reported variant in a woman with recurrent miscarriages with exomphalos. Clinical evaluation of the patients showed variable manifestation of the disease. The frameshift and nonsense variants were consistently associated with exomphalos, while the missense variant caused a less severe phenotype. Pregnancy loss and perinatal lethality were found in the families segregating nonsense mutations. Intrafamilial variability of the clinical BWS features was observed, even between siblings. Our data are indicative of severe BWS phenotypes that, with variable expressivity, may be associated with both frameshift and nonsense variants of CDKN1C.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huling Jiang ◽  
Zepeng Ping ◽  
Jianguo Wang ◽  
Xiaodan Liu ◽  
Yuxia Jin ◽  
...  

Abstract Background Molecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome (BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS. Case presentation: We reported a Chinese case with BWS detected by SNP array analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The genetic analysis showed a de novo duplication of 24 Mb at 11p15.5p14.3 is much longer than ever reported. MS-MLPA showed copy number changes with a peak height ratio value of 1.5 (three copies) at 11p15. The duplication of paternal origin with increase of methylation index of 0.68 at H19 and decreased methylation index of 0.37 at KCNQ1OT1. Conclusion Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this paternally derived duplication of BWS. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.


2021 ◽  
Vol 11 (02) ◽  
pp. e65-e75
Author(s):  
Rishika P. Sakaria ◽  
Roya Mostafavi ◽  
Stephen Miller ◽  
Jewell C. Ward ◽  
Eniko K. Pivnick ◽  
...  

AbstractKagami-Ogata syndrome (KOS) (OMIM #608149) is a genetic imprinting disorder affecting chromosome 14 that results in a characteristic phenotype consisting of typical facial features, skeletal abnormalities including rib abnormalities described as “coat hanger ribs,” respiratory distress, abdominal wall defects, polyhydramnios, and developmental delay. First identified by Wang et al in 1991, over 80 cases of KOS have been reported in the literature. KOS, however, continues to remain a rare and potentially underdiagnosed disorder. In this report, we describe two unrelated male infants with differing initial presentations who were both found to have the characteristic “coat hanger” rib appearance on chest X-ray, raising suspicion for KOS. Molecular testing confirmed KOS in each case. In addition to these new cases, we reviewed the existing cases reported in literature. Presence of polyhydramnios, small thorax, curved ribs, and abdominal wall defects must alert the perinatologist toward the possibility of KOS to facilitate appropriate molecular testing. The overall prognosis of KOS remains poor. Early diagnosis allows for counseling by a multidisciplinary team and enables parents to make informed decisions regarding both pregnancy management and postnatal care.


2021 ◽  
Author(s):  
Huling Jiang ◽  
Zepeng Ping ◽  
Jianguo Wang ◽  
Xiaodan Liu ◽  
Yuxia Jin ◽  
...  

Abstract Background: Molecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome(BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS.Case presentation: We reported a Chinese case with BWS detected by SNP array analysis and methylation-specific multiplex ligation-dependent probe amplification (MS‑MLPA). The genetic analysis showed a de novo duplication of 24 Mb at 11p15.5p14.3 is much longer than ever reported. MS-MLPA showed copy number changes with a peak height ratio value of 1.5(three copies) at 11p15. The duplication of paternal origin with increase of methylation index of 0.68 at H19 and decreased methylation index of 0.37 at KCNQ1OT1. Conclusion: Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this paternally derived duplication of BWS. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.


Sign in / Sign up

Export Citation Format

Share Document