exoskeleton robotics
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 6)

H-INDEX

3
(FIVE YEARS 3)

Author(s):  
Ahmad Dzuharuddin Othman ◽  
Noor Ayuni Che Zakaria ◽  
Natiara Mohamad Hashim ◽  
Shahrol Mohamaddan

2020 ◽  
Vol 11 (1) ◽  
pp. 327-339
Author(s):  
Eduard Fosch-Villaronga ◽  
Anto Čartolovni ◽  
Robin L. Pierce

AbstractPediatric access to exoskeletons lags far behind that of adults. In this article, we promote inclusiveness in exoskeleton robotics by identifying and addressing challenges and barriers to pediatric access to this potentially life-changing technology. We first present available exoskeleton solutions for upper and lower limbs and note the variability in the absence of these. Next, we query the possible reasons for this variability in access, explicitly focusing on children, who constitute a categorically vulnerable population, and also stand to benefit significantly from the use of this technology at this critical point in their physical and emotional growth. We propose the use of a life-based design approach as a way to address some of the design challenges and offer insights toward a resolution regarding market viability and implementation challenges. We conclude that the development of pediatric exoskeletons that allow for and ensure access to health-enhancing technology is a crucial aspect of the responsible provision of health care to all members of society. For children, the stakes are particularly high, given that this technology, when used at a critical phase of a child’s development, not only holds out the possibility of improving the quality of life but also can improve the long-term health prospects.


Robotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
Muhammad Ahsan Gull ◽  
Shaoping Bai ◽  
Thomas Bak

Exoskeleton robotics has ushered in a new era of modern neuromuscular rehabilitation engineering and assistive technology research. The technology promises to improve the upper-limb functionalities required for performing activities of daily living. The exoskeleton technology is evolving quickly but still needs interdisciplinary research to solve technical challenges, e.g., kinematic compatibility and development of effective human–robot interaction. In this paper, the recent development in upper-limb exoskeletons is reviewed. The key challenges involved in the development of assistive exoskeletons are highlighted by comparing available solutions. This paper provides a general classification, comparisons, and overview of the mechatronic designs of upper-limb exoskeletons. In addition, a brief overview of the control modalities for upper-limb exoskeletons is also presented in this paper. A discussion on the future directions of research is included.


10.2196/12010 ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. e12010 ◽  
Author(s):  
Omar Mubin ◽  
Fady Alnajjar ◽  
Nalini Jishtu ◽  
Belal Alsinglawi ◽  
Abdullah Al Mahmud

Background Robot-assisted therapy has become a promising technology in the field of rehabilitation for poststroke patients with motor disorders. Motivation during the rehabilitation process is a top priority for most stroke survivors. With current advancements in technology there has been the introduction of virtual reality (VR), augmented reality (AR), customizable games, or a combination thereof, that aid robotic therapy in retaining, or increasing the interests of, patients so they keep performing their exercises. However, there are gaps in the evidence regarding the transition from clinical rehabilitation to home-based therapy which calls for an updated synthesis of the literature that showcases this trend. The present review proposes a categorization of these studies according to technologies used, and details research in both upper limb and lower limb applications. Objective The goal of this work was to review the practices and technologies implemented in the rehabilitation of poststroke patients. It aims to assess the effectiveness of exoskeleton robotics in conjunction with any of the three technologies (VR, AR, or gamification) in improving activity and participation in poststroke survivors. Methods A systematic search of the literature on exoskeleton robotics applied with any of the three technologies of interest (VR, AR, or gamification) was performed in the following databases: MEDLINE, EMBASE, Science Direct & The Cochrane Library. Exoskeleton-based studies that did not include any VR, AR or gamification elements were excluded, but publications from the years 2010 to 2017 were included. Results in the form of improvements in the patients’ condition were also recorded and taken into consideration in determining the effectiveness of any of the therapies on the patients. Results Thirty studies were identified based on the inclusion criteria, and this included randomized controlled trials as well as exploratory research pieces. There were a total of about 385 participants across the various studies. The use of technologies such as VR-, AR-, or gamification-based exoskeletons could fill the transition from the clinic to a home-based setting. Our analysis showed that there were general improvements in the motor function of patients using the novel interfacing techniques with exoskeletons. This categorization of studies helps with understanding the scope of rehabilitation therapies that can be successfully arranged for home-based rehabilitation. Conclusions Future studies are necessary to explore various types of customizable games required to retain or increase the motivation of patients going through the individual therapies.


2019 ◽  
Vol 10 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Zhibin Song ◽  
Chuanyin Tian ◽  
Jian S. Dai

Abstract. As a conventional mobile assistance device, a wheelchair makes people suffer from skin injuries such as bed sores and ulcer, owing to sitting on a wheelchair for a long period. And the wheelchair is barely able to adapt to complex terrains, such as stairs. With the development of robotic technology, the rise of lower-limb exoskeleton robotics provides a new means of motion assistance, and provides training of motor ability. However, it can't support a user to compete long-distance movement because a user need consume much energy to keep balance. Considering the merits and demerits of wheelchairs and exoskeletons, we propose a novel hybrid motion assistant robot that combines both. The biggest challenge is the design of a mechanism that can transform the robot from a wheelchair into an exoskeleton, as well as the reverse transformation. To achieve this goal, the mechanism must be able to achieve three configurations: the wheelchair configuration, the support configuration, and the exoskeleton configuration. To reduce the weight of the robot and make it more compact, the linkages and actuators in the mechanism are designed to be reusable when the configuration changes. The mechanism is designed based on the analysis of functional requirements, and distributed synthesis of the mechanism is adopted. The kinematics and statics of every configuration are discussed in detail, to obtain the most reasonable dimensions using the particle swarm optimization algorithm. The mechanism performance is simulated and verified using ADAMS software. Finally, an experimental prototype is constructed for preliminary tests.


2018 ◽  
Author(s):  
Omar Mubin ◽  
Fady Alnajjar ◽  
Nalini Jishtu ◽  
Belal Alsinglawi ◽  
Abdullah Al Mahmud

BACKGROUND Robot-assisted therapy has become a promising technology in the field of rehabilitation for poststroke patients with motor disorders. Motivation during the rehabilitation process is a top priority for most stroke survivors. With current advancements in technology there has been the introduction of virtual reality (VR), augmented reality (AR), customizable games, or a combination thereof, that aid robotic therapy in retaining, or increasing the interests of, patients so they keep performing their exercises. However, there are gaps in the evidence regarding the transition from clinical rehabilitation to home-based therapy which calls for an updated synthesis of the literature that showcases this trend. The present review proposes a categorization of these studies according to technologies used, and details research in both upper limb and lower limb applications. OBJECTIVE The goal of this work was to review the practices and technologies implemented in the rehabilitation of poststroke patients. It aims to assess the effectiveness of exoskeleton robotics in conjunction with any of the three technologies (VR, AR, or gamification) in improving activity and participation in poststroke survivors. METHODS A systematic search of the literature on exoskeleton robotics applied with any of the three technologies of interest (VR, AR, or gamification) was performed in the following databases: MEDLINE, EMBASE, Science Direct & The Cochrane Library. Exoskeleton-based studies that did not include any VR, AR or gamification elements were excluded, but publications from the years 2010 to 2017 were included. Results in the form of improvements in the patients’ condition were also recorded and taken into consideration in determining the effectiveness of any of the therapies on the patients. RESULTS Thirty studies were identified based on the inclusion criteria, and this included randomized controlled trials as well as exploratory research pieces. There were a total of about 385 participants across the various studies. The use of technologies such as VR-, AR-, or gamification-based exoskeletons could fill the transition from the clinic to a home-based setting. Our analysis showed that there were general improvements in the motor function of patients using the novel interfacing techniques with exoskeletons. This categorization of studies helps with understanding the scope of rehabilitation therapies that can be successfully arranged for home-based rehabilitation. CONCLUSIONS Future studies are necessary to explore various types of customizable games required to retain or increase the motivation of patients going through the individual therapies.


Sign in / Sign up

Export Citation Format

Share Document