ulosonic acid
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 22 (7) ◽  
pp. 3303
Author(s):  
Artur Muszyński ◽  
Kol A. Zarember ◽  
Christian Heiss ◽  
Joseph Shiloach ◽  
Lars J. Berg ◽  
...  

Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10–100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-β-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3′ 14:0(3-OH), N-2′ 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo–lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko–lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides.


Marine Drugs ◽  
2020 ◽  
Vol 18 (5) ◽  
pp. 268
Author(s):  
Maxim S. Kokoulin ◽  
Alexandra S. Kuzmich ◽  
Lyudmila A. Romanenko ◽  
Irina V. Chikalovets ◽  
Oleg V. Chernikov

Psychrobacter marincola KMM 277T is a psychrophilic Gram-negative bacterium that has been isolated from the internal tissues of an ascidian Polysyncraton sp. Here, we report the structure of the capsular polysaccharide from P. marincola KMM 277T and its effect on the viability and colony formation of human acute promyelocytic leukemia HL-60 cells. The polymer was purified by several separation methods, including ultracentrifugation and chromatographic procedures, and the structure was elucidated by means of chemical analysis, 1-D, and 2-D NMR spectroscopy techniques. It was found that the polysaccharide consists of branched hexasaccharide repeating units containing two 2-N-acetyl-2-deoxy-d-galacturonic acids, and one of each of 2-N-acetyl-2-deoxy-d-glucose, d-glucose, d-ribose, and 7-N-acetylamino-3,5,7,9-tetradeoxy-5-N-[(R)-2-hydroxypropanoylamino]- l-glycero-l-manno-non-2-ulosonic acid. To our knowledge, this is the first finding a pseudaminic acid decorated with lactic acid residue in polysaccharides. The biological analysis showed that the capsular polysaccharide significantly reduced the viability and colony formation of HL-60 cells. Taken together, our data indicate that the capsular polysaccharide from P. marincola KMM 277T is a promising substance for the study of its antitumor properties and the mechanism of action in the future.


2020 ◽  
Author(s):  
Caitlin M. McMahon ◽  
Christine R. Isabella ◽  
Ian W. Windsor ◽  
Paul Kosma ◽  
R. T. Raines ◽  
...  

Recognition of distinct glycans is central to biology, and lectins mediate this function. Lectin glycan preferences are usually centered on specific monosaccharides. In contrast, human intelectin-1 (hItln-1, also known as Omentin-1) is a soluble lectin that binds a range of microbial sugars, including β-Dgalactofuranose (β-Galf), D-glycerol 1-phosphate, D-glycero-D-talo-oct-2-ulosonic acid (KO), and 3- deoxy-D-manno-oct-2-ulosonic acid (KDO). Though these saccharides differ dramatically in structure, they share a common feature—an exocyclic vicinal diol. How and whether such a small fragment is sufficient for recognition was unclear. We tested several glycans with this epitope and found that L-glycero-α-Dmanno- heptose and D-glycero-α-D-manno-heptose possess the critical diol motif yet bind weakly. To better understand hItln-1 recognition, we determined the structure of the hItln-1·KO complex using X-ray crystallography, and our 1.59-Å resolution structure enabled unambiguous assignment of the bound KO conformation. This carbohydrate conformation was present in >97% of the KDO/KO structures in the Protein Data Bank. Bioinformatic analysis revealed that KO and KDO adopt a common conformation, while heptoses prefer different conformers. The preferred conformers of KO and KDO favor hItln-1 engagement, but those of the heptoses do not. Natural bond orbital (NBO) calculations suggest these observed conformations, including the side chain orientations, are stabilized by not only steric but also stereoelectronic effects. Thus, our data highlight a role for stereoelectronic effects in dictating the specificity of glycan recognition by proteins. Finally, our finding that hItln-1 avoids binding prevalent glycans with a terminal 1,2 diol (e.g., NeuAc, and L-glycero-α-D-manno-heptose) suggests the lectin has evolved to recognize distinct bacterial species.


2020 ◽  
Author(s):  
Caitlin M. McMahon ◽  
Christine R. Isabella ◽  
Ian W. Windsor ◽  
Paul Kosma ◽  
R. T. Raines ◽  
...  

Recognition of distinct glycans is central to biology, and lectins mediate this function. Lectin glycan preferences are usually centered on specific monosaccharides. In contrast, human intelectin-1 (hItln-1, also known as Omentin-1) is a soluble lectin that binds a range of microbial sugars, including β-Dgalactofuranose (β-Galf), D-glycerol 1-phosphate, D-glycero-D-talo-oct-2-ulosonic acid (KO), and 3- deoxy-D-manno-oct-2-ulosonic acid (KDO). Though these saccharides differ dramatically in structure, they share a common feature—an exocyclic vicinal diol. How and whether such a small fragment is sufficient for recognition was unclear. We tested several glycans with this epitope and found that L-glycero-α-Dmanno- heptose and D-glycero-α-D-manno-heptose possess the critical diol motif yet bind weakly. To better understand hItln-1 recognition, we determined the structure of the hItln-1·KO complex using X-ray crystallography, and our 1.59-Å resolution structure enabled unambiguous assignment of the bound KO conformation. This carbohydrate conformation was present in >97% of the KDO/KO structures in the Protein Data Bank. Bioinformatic analysis revealed that KO and KDO adopt a common conformation, while heptoses prefer different conformers. The preferred conformers of KO and KDO favor hItln-1 engagement, but those of the heptoses do not. Natural bond orbital (NBO) calculations suggest these observed conformations, including the side chain orientations, are stabilized by not only steric but also stereoelectronic effects. Thus, our data highlight a role for stereoelectronic effects in dictating the specificity of glycan recognition by proteins. Finally, our finding that hItln-1 avoids binding prevalent glycans with a terminal 1,2 diol (e.g., NeuAc, and L-glycero-α-D-manno-heptose) suggests the lectin has evolved to recognize distinct bacterial species.


Glycobiology ◽  
2019 ◽  
Vol 30 (5) ◽  
pp. 325-333 ◽  
Author(s):  
Saeideh Shamsi Kazem Abadi ◽  
Matthew C Deen ◽  
Jacqueline N Watson ◽  
Fahimeh S Shidmoossavee ◽  
Andrew J Bennet

Abstract N-acetylneuraminic acid (5-acetamido-3,5-dideoxy-d-glycero-d-galacto-non-2-ulosonic acid), which is the principal sialic acid family member of the non-2-ulosonic acids and their various derivatives, is often found at the terminal position on the glycan chains that adorn all vertebrate cells. This terminal position combined with subtle variations in structure and linkage to the underlying glycan chains between humans and other mammals points to the importance of this diverse group of nine-carbon sugars as indicators of the unique aspects of human evolution and is relevant to understanding an array of human conditions. Enzymes that catalyze the removal N-acetylneuraminic acid from glycoconjugates are called neuraminidases. However, despite their documented role in numerous diseases, due to the promiscuous activity of many neuraminidases, our knowledge of the functions and metabolism of many sialic acids and the effect of the attachment to cellular glycans is limited. To this end, through a concerted effort of generation of random and site-directed mutagenesis libraries, subsequent screens and positive and negative evolutionary selection protocols, we succeeded in identifying three enzyme variants of the neuraminidase from the soil bacterium Micromonospora viridifaciens with markedly altered specificity for the hydrolysis of natural Kdn (3-deoxy-d-glycero-d-galacto-non-2-ulosonic acid) glycosidic linkages compared to those of N-acetylneuraminic acid. These variants catalyze the hydrolysis of Kdn-containing disaccharides with catalytic efficiencies (second-order rate constants: kcat/Km) of greater than 105 M−1 s−1; the best variant displayed an efficiency of >106 M−1 s−1 at its optimal pH.


Sign in / Sign up

Export Citation Format

Share Document