adjacent water
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 24)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 8 ◽  
Author(s):  
Yiquan Yuan ◽  
Xiuzhen Li ◽  
Zuolun Xie ◽  
Liming Xue ◽  
Bin Yang ◽  
...  

Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source.


2021 ◽  
Author(s):  
Benjamin Joseph Davison ◽  
Tom Cowton ◽  
Andrew Sole ◽  
Finlo Cottier ◽  
Pete Nienow

Abstract. The rate of ocean-driven retreat of Greenland’s tidewater glaciers remains highly uncertain in predictions of future sea level rise, in part due to poorly constrained glacier-adjacent water properties. Icebergs and their meltwater contributions are likely important modifiers of fjord water properties, yet their effect is poorly understood. Here, we use a 3-D ocean circulation model, coupled to a submarine iceberg melt module, to investigate the effect of submarine iceberg melting on glacier-adjacent water properties in a range of idealised settings. Submarine iceberg melting can modify glacier-adjacent water properties in three principle ways: (1) substantial cooling and modest freshening in the upper ~50 m of the water column; (2) warming of Polar Water at intermediate depths due to iceberg melt-induced upwelling of warm Atlantic Water, and; (3) warming of the deeper Atlantic Water layer when vertical temperature gradients through this layer are steep (due to vertical mixing of warm water at depth), but cooling of the Atlantic Water layer when vertical temperature gradients are shallow. The overall effect of iceberg melt is to make glacier-adjacent water properties more uniform with depth. When icebergs extend to, or below, the depth of a sill at the fjord mouth, they can cause cooling throughout the entire water column. All of these effects are more pronounced in fjords with higher iceberg concentrations and deeper iceberg keel depths. These iceberg melt-induced changes to glacier-adjacent water properties will reduce rates of glacier submarine melting near the surface, but increase them in the Polar Water layer, and cause typically modest impacts in the Atlantic Water layer. These results characterise the important role of submarine iceberg melting in modifying ice sheet-ocean interaction, and highlight the need to improve representations of fjord processes in ice sheet-scale models.


Author(s):  
Rogerio De Medeiros Tocantins ◽  
Bettina Tomio Heckert ◽  
Rafael Salum de Oliveira ◽  
Hélio João Coelho ◽  
Gisele Chibinski Parabocz ◽  
...  

A forensic engineering analyses of a chemical incident is presented that was classified as a self-sustaining decomposition (SSD) event, which occurred in a load of 10,000 tons of NK 21-00-21 fertilizer bulk stored inside a warehouse in the city of São Francisco do Sul in Brazil. The chemical reaction developed within the fertilizer mass and took several days to be controlled, resulting in the evacuation of thousands of residents. The water used to fight against the reaction, after having contact with the load of fertilizer material, promoted changes in adjacent water bodies, causing the death of animals (fish, crustaceans, and amphibians). The smoke from the chemical reaction products damaged the incident’s surrounding vegetation. Large SSD events are rare, with an average worldwide frequency of one every three years. Therefore, in addition to presenting a case study of this type of phenomenon, the main objective of this work is to discuss the causes that led to SSD reaction at this event, evaluate its consequences, and motivate future studies.


2021 ◽  
Vol 10 (27) ◽  
Author(s):  
Dominik Schneider ◽  
Daniela Zühlke ◽  
Anja Poehlein ◽  
Katharina Riedel ◽  
Rolf Daniel

Metagenome-assembled genome sequences (MAGs) were generated from two wastewater treatment systems in two German cities (Göttingen and Greifswald), based on metagenomes derived from hospital effluent, different wastewater treatment stages, and adjacent water bodies. The MAGs mainly originated from bacterial members of Proteobacteria , Bacteroidota , Firmicutes , “ Candidatus Patescibacteria,” Actinobacteriota , Chloroflexota , Desulfobacterota , and Verrucomicrobiota .


2021 ◽  
Vol 9 ◽  
Author(s):  
Ruili Shi ◽  
Zhi Zhao ◽  
Xiaoming Huang ◽  
Pengju Wang ◽  
Yan Su ◽  
...  

We searched the lowest-energy structures of hydrated calcium ion clusters Ca2+(H2O)n (n = 10–18) in the whole potential energy surface by the comprehensive genetic algorithm (CGA). The lowest-energy structures of Ca2+(H2O)10–12 clusters show that Ca2+ is always surrounded by six H2O molecules in the first shell. The number of first-shell water molecules changes from six to eight at n = 12. In the range of n = 12–18, the number of first-shell water molecules fluctuates between seven and eight, meaning that the cluster could pack the water molecules in the outer shell even though the inner shell is not full. Meanwhile, the number of water molecules in the second shell and the total hydrogen bonds increase with an increase in the cluster size. The distance between Ca2+ and the adjacent water molecules increases, while the average adjacent O-O distance decreases as the cluster size increases, indicating that the interaction between Ca2+ and the adjacent water molecules becomes weaker and the interaction between water molecules becomes stronger. The interaction energy and natural bond orbital results show that the interaction between Ca2+ and the water molecules is mainly derived from the interaction between Ca2+ and the adjacent water molecules. The charge transfer from the lone pair electron orbital of adjacent oxygen atoms to the empty orbital of Ca2+ plays a leading role in the interaction between Ca2+ and water molecules.


Oceanography ◽  
2021 ◽  
Vol 34 (2) ◽  
Author(s):  
Roger Sayre ◽  
◽  
Kevin Butler ◽  
Keith Van Graafeiland ◽  
Sean Breyer ◽  
...  

A new data layer provides Coastal and Marine Ecological Classification Standard (CMECS) labels for global coastal segments at 1 km or shorter resolution. These characteristics are summarized for six US Marine Biodiversity Observation Network (MBON) sites and one MBON Pole to Pole of the Americas site in Argentina. The global coastlines CMECS classifications were produced from a partitioning of a 30 m Landsat-derived shoreline vector that was segmented into 4 million 1 km or shorter segments. Each segment was attributed with values from 10 variables that represent the ecological settings in which the coastline occurs, including properties of the adjacent water, adjacent land, and coastline itself. The 4 million segments were classified into 81,000 coastal segment units (CSUs) as unique combinations of variable classes. We summarize the process to develop the CSUs and derive summary descriptions for the seven MBON case study sites. We discuss the intended application of the new CSU data for research and management in coastal areas.


2021 ◽  
Vol 744 (1) ◽  
pp. 012029
Author(s):  
T Hidayat ◽  
M Boer ◽  
M M Kamal ◽  
Zairion ◽  
A Suman

2021 ◽  
Author(s):  
Ben Davison

<p>Ocean-driven retreat of Greenland’s tidewater glaciers remains a large uncertainty in predictions of sea level rise, partly due to limited constraints on glacier-adjacent water properties. Icebergs are likely important modifiers of fjord water properties, yet their effect is poorly understood. Here, we use a 3-D ocean circulation model coupled to a submarine iceberg melt module to investigate the effect of submarine iceberg melting on glacier-adjacent water properties in a range of idealised settings. Icebergs can modify glacier adjacent water properties in three principle ways: (1) substantial cooling and modest freshening in the upper ~50 m of the water column; (2) warming of Polar Water due to iceberg-induced upwelling of warm Atlantic Water, and; (3) the Atlantic Water layer warms on average when vertical temperature gradients through the Atlantic Water layer are steep (due to vertical mixing of warm water at depth), but cools on average when vertical temperature gradients are shallow. When icebergs extend to-or-below sill depth, they can cause cooling throughout the entire water column. All of these effects are more pronounced in fjords with higher iceberg concentrations and deeper iceberg keel depths. These results characterise the important role of icebergs in modifying ice sheet – ocean interaction and highlight the need to improve representations of fjord processes in ice sheet-scale models.</p>


Sign in / Sign up

Export Citation Format

Share Document