interface thermal conductance
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 104 (19) ◽  
Author(s):  
Saheb Karak ◽  
Jayanta Bera ◽  
Suvodeep Paul ◽  
Satyajit Sahu ◽  
Surajit Saha

2021 ◽  
Author(s):  
Houfu Song ◽  
Fang Liu ◽  
Song Hu ◽  
Qinshu Li ◽  
Susu Yang ◽  
...  

Abstract Understanding thermal transport across metal/semiconductor interfaces is crucial for heat dissipation of electronics The dominant heat carriers in non-metals, phonons, transport elastically across most interfaces, except for a few extreme cases where the two materials that formed the interface are highly dissimilar with a large difference in Debye temperature. In this work we show that even for two materials with similar Debye temperatures (Al/Si, Al/GaN), a substantial portion of phonons will transport inelastically across their interfaces at high temperatures, significantly enhancing interface thermal conductance. Moreover, we find that interface roughness strongly affects phonon transport process. For atomically sharp interfaces, phonons are allowed to transport inelastically and interface thermal conductance linearly increases at high temperatures. With increasing interface roughness, inelastic phonon transport rapidly diminishes. Our results provide new insights on phonon transport across interfaces and open up opportunities to engineering interface thermal conductance specifically for materials of relevance to microelectronics.


2020 ◽  
Vol 56 (3) ◽  
pp. 2241-2274
Author(s):  
S. Q. Jia ◽  
F. Yang

Abstract Copper/diamond composites have drawn lots of attention in the last few decades, due to its potential high thermal conductivity and promising applications in high-power electronic devices. However, the bottlenecks for their practical application are high manufacturing/machining cost and uncontrollable thermal performance affected by the interface characteristics, and the interface thermal conductance mechanisms are still unclear. In this paper, we reviewed the recent research works carried out on this topic, and this primarily includes (1) evaluating the commonly acknowledged principles for acquiring high thermal conductivity of copper/diamond composites that are produced by different processing methods; (2) addressing the factors that influence the thermal conductivity of copper/diamond composites; and (3) elaborating the interface thermal conductance problem to increase the understanding of thermal transferring mechanisms in the boundary area and provide necessary guidance for future designing the composite interface structure. The links between the composite’s interface thermal conductance and thermal conductivity, which are built quantitatively via the developed models, were also reviewed in the last part.


Author(s):  
Chukwudi Azih ◽  
Reilly MacCoy ◽  
Hazem Mazhar ◽  
Chris Fraser

Abstract In some engineered systems, the interface thermal conductance is a key parameter that governs the heat transfer behaviour of components in solid-solid contact. For example, in certain postulated accident scenarios for CANDU reactors, the pressure tube (PT) may deform into contact with the calandria tube (CT) to form a more direct path for heat transfer from the fuel to the moderator. There have been no direct measurements of interface thermal conductance in integrated “Contact boiling” experiments designed to mimic this Loss-of-coolant accident (LOCA) scenario due to the geometrical limits of the test components and the cumbersome nature of the instrumentation required to extract contact conductance data. It has been noted that the modelling of the contact conductance is one of the main sources of uncertainty in predicting the outcome of the contact boiling experiments that mimic LOCA scenarios. The present study demonstrated an analogy between the electrical and thermal contact conductance for PT/CT interfaces. The range of interface pressure and interface temperatures studies are selected to match the expected range of conditions during a CANDU LOCA scenario. The experiment setup consists of two sets of specimen representing PT and CT material. The specimen are instrumented with four K-type thermocouples in sequence to capture the temperature gradient imposed via a three-chamber oven. Within a range of interface pressures from 2 to 7 MPa and a temperature range from 510 to 720°C, the analogy is independent of the interface pressure or the load applied. This demonstrates the measurement of the electrical conductance between the PT and CT in contact boiling as a promising technique for obtaining in-situ information on the thermal contact conductance during integrated experiments.


Sign in / Sign up

Export Citation Format

Share Document