sample average approximations
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Damek Davis ◽  
Dmitriy Drusvyatskiy

We investigate the stochastic optimization problem of minimizing population risk, where the loss defining the risk is assumed to be weakly convex. Compositions of Lipschitz convex functions with smooth maps are the primary examples of such losses. We analyze the estimation quality of such nonsmooth and nonconvex problems by their sample average approximations. Our main results establish dimension-dependent rates on subgradient estimation in full generality and dimension-independent rates when the loss is a generalized linear model. As an application of the developed techniques, we analyze the nonsmooth landscape of a robust nonlinear regression problem.


Author(s):  
John C. Duchi ◽  
Peter W. Glynn ◽  
Hongseok Namkoong

We study statistical inference and distributionally robust solution methods for stochastic optimization problems, focusing on confidence intervals for optimal values and solutions that achieve exact coverage asymptotically. We develop a generalized empirical likelihood framework—based on distributional uncertainty sets constructed from nonparametric f-divergence balls—for Hadamard differentiable functionals, and in particular, stochastic optimization problems. As consequences of this theory, we provide a principled method for choosing the size of distributional uncertainty regions to provide one- and two-sided confidence intervals that achieve exact coverage. We also give an asymptotic expansion for our distributionally robust formulation, showing how robustification regularizes problems by their variance. Finally, we show that optimizers of the distributionally robust formulations we study enjoy (essentially) the same consistency properties as those in classical sample average approximations. Our general approach applies to quickly mixing stationary sequences, including geometrically ergodic Harris recurrent Markov chains.


Author(s):  
Harsha Gangammanavar ◽  
Yifan Liu ◽  
Suvrajeet Sen

Stochastic decomposition (SD) has been a computationally effective approach to solve large-scale stochastic programming (SP) problems arising in practical applications. By using incremental sampling, this approach is designed to discover an appropriate sample size for a given SP instance, thus precluding the need for either scenario reduction or arbitrary sample sizes to create sample average approximations (SAA). When compared with the solutions obtained using the SAA procedure, SD provides solutions of similar quality in far less computational time using ordinarily available computational resources. However, previous versions of SD were not applicable to problems with randomness in second-stage cost coefficients. In this paper, we extend its capabilities by relaxing this assumption on cost coefficients in the second stage. In addition to the algorithmic enhancements necessary to achieve this, we also present the details of implementing these extensions, which preserve the computational edge of SD. Finally, we illustrate the computational results obtained from the latest implementation of SD on a variety of test instances generated for problems from the literature. We compare these results with those obtained from the regularized L-shaped method applied to the SAA function of these problems with different sample sizes.


Sign in / Sign up

Export Citation Format

Share Document