paz domain
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 1-10
Author(s):  
Guo Qi-xin ◽  
Xu Lu ◽  
Bai Hao ◽  
Chen Guo-Hong ◽  
Chang Guo-bin
Keyword(s):  

2021 ◽  
Author(s):  
Shirui Chen ◽  
Wei Liu ◽  
Masahiro Naganuma ◽  
Yukihide Tomari ◽  
Hiro-oki Iwakawa

Monocot DICER-LIKE3 (DCL3) and DCL5 produce distinct 24-nt heterochromatic small interfering RNAs (hc-siRNAs) and phased secondary siRNAs (phasiRNAs). The former small RNAs are linked to plant heterochromatin, and the latter to reproductive processes. It is assumed that these DCLs evolved from an ancient "eudicot-type" DCL3 ancestor, which may have produced both types of siRNAs. However, how functional differentiation was achieved after gene duplication remains elusive. Here, we find that monocot DCL3 and DCL5 exhibit biochemically distinct preferences for 3′ overhangs and 5′ phosphates, consistent with the structural properties of their in vivo double-stranded RNA substrates. Importantly, these distinct substrate specificities are determined by the PAZ domains of DCL3 and DCL5 which have accumulated mutations during the course of evolution. These data explain the mechanism by which these DCLs cleave their cognate substrates from a fixed end, ensuring the production of functional siRNAs. Our study also indicates how plants have diversified and optimized RNA silencing mechanisms during evolution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiang Guo ◽  
Yingying Sun ◽  
Liuqing Chen ◽  
Fei Huang ◽  
Qian Liu ◽  
...  

Argonaute proteins (Agos) from thermophilic archaea are involved in several important processes, such as host defense and DNA replication. The catalytic mechanism of Ago from different microbes with great diversity and genome editing potential is attracting increasing attention. Here, we describe an Argonaute from hyperthermophilic Ferroglobus placidus (FpAgo), with a typical DNA-guided DNA endonuclease activity but adopted with only a short guide 15–20 nt length rather than a broad guide selectivity for reported Agos. FpAgo performed the precise cleavage of phosphodiester bonds between 10 and 11 nt on the target strand (counting from the guide strand) guided strictly by 5′-phosphorylated DNA at temperatures ranging from 75 to 99°C. The cleavage activity was regulated by the divalent cations Mn2+, Mg2+, Co2+, and Ni2+. In addition, FpAgo possesses guide/target mismatch tolerance in the seed region but is sensitive to mismatches in the 3′-guide region. Notably, the EMSA assay revealed that the FpAgo-guide-target ternary complex exhibited a stronger binding affinity for short 15 and 16 nt guide DNAs than longer guides. Moreover, we performed structural modeling analyses that implied the unique PAZ domain of FpAgo for 3′-guide recognition and binding to affect guide length specificity. This study broadens our understanding of thermophilic Agos and paves the way for their use in DNA manipulation.


2021 ◽  
Vol 553 ◽  
pp. 187-190
Author(s):  
Qianqian Li ◽  
Aiping Dong ◽  
Zhongliang Zhu ◽  
Jiahai Zhang ◽  
Yanjun Li ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Qixin Guo ◽  
Lu Xu ◽  
Xiaoya Yuan ◽  
Yong Jiang ◽  
Hao Bai ◽  
...  

Abstract Background: Piwi-like protein 1 (PIWIL1) plays a crucial role in stem cell proliferation, embryogenesis, growth, and development. The aim of this study was to reveal the function of PIWIL1 and its PAZ (Piwi/Argonaute/Zwille) domain in chicken embryogenesis. Results: PIWI1 expression was analyzed in different stages of spermatogenesis by RT-PCR and the PAZ domain was mutated based on its 3D structure model using the CRISPR/Cas9 technology. The results indicated that PIWIL1 mRNA was specifically expressed in spermatogonium cells undergoing meiosis. After targeting the PAZ domain (300–370 amino acid residues), we obtained two mutant DF-1 cell clones with 23-bp and 8-bp deletions. Injection of the pCMV-Cas9-puro-sgRNA-2 construct into 2.5-day embryos resulted in generation of 19 different PAZ mutants (13 males and 6 females), which had delayed hatching, reduced quality of semen, and decreased expression of PIWIL1 and SOX2 at embryonic days 5 and 18. However, we could not obtain PAZ double knockout (KO) chickens by crossing of the F0 generation, suggesting that PAZ double KO may halt embryonic development. Conclusions: Our results indicate that PIWIL1 plays an important role in meiosis and that PAZ mutations can lead to decreased sperm quality, whereas its double KO may arrest embryogenesis in chicken.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1414 ◽  
Author(s):  
Marta Wojnicka ◽  
Agnieszka Szczepanska ◽  
Anna Kurzynska-Kokorniak

The Dicer ribonuclease plays a crucial role in the biogenesis of small regulatory RNAs (srRNAs) by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. Dicer-generated srRNAs can control gene expression by targeting complementary transcripts and repressing their translation or inducing their cleavage. Human Dicer (hDicer) is a multidomain enzyme comprising a putative helicase domain, a DUF283 domain, platform, a PAZ domain, a connector helix, two RNase III domains (RNase IIIa and RNase IIIb) and a dsRNA-binding domain. Specific, ~20-base pair siRNA or miRNA duplexes with 2 nucleotide (nt) 3’-overhangs are generated by Dicer when an RNA substrate is anchored within the platform-PAZ-connector helix (PPC) region. However, increasing number of reports indicate that in the absence of the PAZ domain, binding of RNA substrates can occur by other Dicer domains. Interestingly, truncated variants of Dicer, lacking the PPC region, have been found to display a DNase activity. Inspired by these findings, we investigated how the lack of the PAZ domain, or the entire PPC region, would influence the cleavage activity of hDicer. Using immunopurified 3xFlag-hDicer produced in human cells and its two variants: one lacking the PAZ domain, and the other lacking the entire PPC region, we show that the PAZ domain deletion variants of hDicer are not able to process a pre-miRNA substrate, a dsRNA with 2-nt 3ʹ-overhangs, and a blunt-ended dsRNA. However, the PAZ deletion variants exhibit both RNase and DNase activity on short single-stranded RNA and DNAs, respectively. Collectively, our results indicate that when the PAZ domain is absent, other hDicer domains may contribute to substrate binding and in this case, non-canonical products can be generated.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Hanbang Zhang ◽  
Vy Tran ◽  
Dipak Manna ◽  
Gretchen Ehrenkaufer ◽  
Upinder Singh

ABSTRACT The RNA interference (RNAi) pathway regulates gene expression in many eukaryotic organisms. Argonaute (Ago) proteins, together with bound small RNAs (sRNAs), are key effectors that mediate gene silencing function. However, there is limited knowledge of Ago proteins and their functions in nonmodel systems. In the protozoan parasite Entamoeba histolytica, RNAi is a robust means for stable gene silencing mediated via large populations of antisense sRNAs. Here, we report functional characterization of three Ago proteins in E. histolytica (EhAgo2-1, EhAgo2-2, and EhAgo2-3). Our data show that each EhAgo protein has a distinct subcellular localization and binds 27-nucleotide (nt) sRNAs and that the localization of EhAgo proteins is altered in response to stress conditions. Via mutagenesis analyses, we demonstrated that the Ago PAZ (Piwi/Argonaute/Zwille) domain in all three EhAgos is essential for sRNA binding. With mutation of the PAZ domain in EhAgo2-2, there was no effect on the nuclear localization of the protein but a strong phenotype and a growth defect. We further show that EhAgo2-2 contains an unusual repetitive DR-rich (aspartic acid, arginine-rich) motif region which functions as a nuclear localization signal (NLS) and is both necessary and sufficient to mediate nuclear localization. Overall, our data delineate the localization and sRNA binding features of the three E. histolytica Ago proteins and demonstrate that the PAZ domain is necessary for sRNA binding. The repetitive DR-rich motif region in EhAgo2-2 has not previously been defined in other systems, which adds to the novel observations that can be made when studies of the RNAi pathway are extended to nonmodel systems. IMPORTANCE The protozoan parasite Entamoeba histolytica, which causes amebiasis and affects over 50 million people worldwide, contains an important RNAi pathway for gene silencing. Gene silencing via the RNAi pathway is mediated by the Argonaute (Ago) proteins. However, we lack knowledge on Ago function(s) in this nonmodel system. In this paper, we discovered that three E. histolytica Ago proteins (EhAgo2-1, EhAgo2-2, and EhAgo2-3) all bind 27-nt small RNAs and have distinct subcellular localizations, which change in response to stress conditions. The EhAgos bind small RNA populations via their PAZ domains. An unusual repetitive DR-rich motif region is identified in EhAgo2-2 that functions as a nuclear localization signal. Our results show for the first time an active nuclear transport process of the EhAgo2-2 RNA-induced silencing complex (RISC) in this parasite. These data add to the novel observations that can be made when studies of the RNAi pathway are extended to nonmodel systems.


2016 ◽  
Vol 113 (49) ◽  
pp. 14031-14036 ◽  
Author(s):  
Suresh K. Kandasamy ◽  
Ryuya Fukunaga

The enzyme Dicer produces small silencing RNAs such as micro-RNAs (miRNAs) and small interfering RNAs (siRNAs). In Drosophila, Dicer-1 produces ∼22–24-nt miRNAs from pre-miRNAs, whereas Dicer-2 makes 21-nt siRNAs from long double-stranded RNAs (dsRNAs). How Dicer-2 precisely makes 21-nt siRNAs with a remarkably high fidelity is unknown. Here we report that recognition of the 5′-monophosphate of a long dsRNA substrate by a phosphate-binding pocket in the Dicer-2 PAZ (Piwi, Argonaute, and Zwille/Pinhead) domain is crucial for the length fidelity, but not the efficiency, in 21-nt siRNA production. Loss of the length fidelity, meaning increased length heterogeneity of siRNAs, caused by point mutations in the phosphate-binding pocket of the Dicer-2 PAZ domain decreased RNA silencing activity in vivo, showing the importance of the high fidelity to make 21-nt siRNAs. We propose that the 5′-monophosphate of a long dsRNA substrate is anchored by the phosphate-binding pocket in the Dicer-2 PAZ domain and the distance between the pocket and the RNA cleavage active site in the RNaseIII domain corresponds to the 21-nt pitch in the A-form duplex of a long dsRNA substrate, resulting in high-fidelity 21-nt siRNA production. This study sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a remarkably high fidelity for efficient RNA silencing.


Sign in / Sign up

Export Citation Format

Share Document