Design of cobalt‐iron complex sulfides grown on nickel foam modified by reduced graphene oxide as a highly effect bifunctional electrocatalyst for overall water splitting

Author(s):  
Kai Zhang ◽  
Pingping Jiang ◽  
Qian Gu ◽  
Yan Leng ◽  
Pingbo Zhang ◽  
...  
Nanoscale ◽  
2020 ◽  
Vol 12 (25) ◽  
pp. 13680-13687 ◽  
Author(s):  
Lulu Chen ◽  
Haeseong Jang ◽  
Min Gyu Kim ◽  
Qing Qin ◽  
Xien Liu ◽  
...  

A Fe, Al-codoped NiSe2 on rGO catalyst exhibits the enhanced activity and durability toward HER and OER, due to the synergistic contribution of the dual-cation co-doping effect and the more defects created by the Al leaching.


Author(s):  
Kaiming Guo ◽  
Firdoz Shaik ◽  
Jine Yang ◽  
Bin Jiang

Abstract Water splitting is considered as a potential sustainable and green technology for producing mass hydrogen and oxygen. A cost-effective self-supported stable electrocatalyst with excellent electrocatalytic performance in a wide pH range is greatly required for water splitting. This work reports on the synthesis and anchoring of Fe1CoxNiyP nanoparticles on vertically aligned reduced graphene oxide array (VrGO) via electroless plating. The catalytic activity of Fe1CoxNiyP nanoparticles is tuned finely by tailoring the cationic ratio of Co and Ni. Fe1Co2Ni1P/VrGO exhibits the lowest overpotential (58 and 110 mV) at 10 mA cm−2 and lowest tafel slope (31 and 33 mV dec−1) for hydrogen evolution reaction in 1.0 M KOH and 0.5 M H2SO4 respectively. Fe1Co1Ni2P/VrGO exhibits the lowest overpotential (173 mV) at 10 mA cm−2 with lowest tafel slope (47 mV dec-1) for oxygen evolution reaction. The enhanced performance of the electrocatalyst is attributed to improved electrical conductivity, synergistic effects and beneficial electronic states caused by the appropriate atomic ratio of Co and Ni in the bifunctional electrocatalyst. This study helps to explore the effect of variable cationic ratio in the cost-effective ternary iron group metal phosphides electrocatalysts to achieve enhanced electrocatalytic performance for water splitting in a wide pH range.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3379
Author(s):  
Seung Geun Jo ◽  
Chung-Soo Kim ◽  
Sang Jun Kim ◽  
Jung Woo Lee

Efficient water electrolysis is one of the key issues in realizing a clean and renewable energy society based on hydrogen fuel. However, several obstacles remain to be solved for electrochemical water splitting catalysts, which are the high cost of noble metals and the high overpotential of alternative catalysts. Herein, we suggest Ni-based alternative catalysts that have comparable performances with precious metal-based catalysts and could be applied to both cathode and anode by precise phase control of the pristine catalyst. A facile microwave-assisted procedure was used for NiO nanoparticles anchored on reduced graphene oxide (NiO NPs/rGO) with uniform size distribution in ~1.8 nm. Subsequently, the Ni-NiO dual phase of the NPs (A-NiO NPs/rGO) could be obtained via tailored partial reduction of the NiO NPs/rGO. Moreover, we demonstrate from systematic HADDF-EDS and XPS analyses that metallic Ni could be formed in a local area of the NiO NP after the reductive annealing procedure. Indeed, the synergistic catalytic performance of the Ni-NiO phase of the A-NiO NPs/rGO promoted hydrogen evolution reaction activity with an overpotential as 201 mV at 10 mA cm−2, whereas the NiO NPs/rGO showed 353 mV. Meanwhile, the NiO NPs/rGO exhibited the most excellent oxygen evolution reaction performance among all of the Ni-based catalysts, with an overpotential of 369 mV at 10 mA cm−2, indicating that they could be selectively utilized in the overall water splitting. Furthermore, both catalysts retained their activities over 12 h with constant voltage and 1000 cycles under cyclic redox reaction, proving their high durability. Finally, the full cell capability for the overall water electrolysis system was confirmed by observing the generation of hydrogen and oxygen on the surface of the cathode and anode.


2016 ◽  
Vol 4 (13) ◽  
pp. 4686-4690 ◽  
Author(s):  
Jianmei Wang ◽  
Wenrong Yang ◽  
Jingquan Liu

CoP2nanoparticles decorated reduced graphene oxide sheet (CoP2/RGO) acts as a super-efficient bifunctional electrocatalyst for full water splitting.


Sign in / Sign up

Export Citation Format

Share Document