sulfolobus turreted icosahedral virus
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simona Pilotto ◽  
Thomas Fouqueau ◽  
Natalya Lukoyanova ◽  
Carol Sheppard ◽  
Soizick Lucas-Staat ◽  
...  

AbstractRNA polymerase inhibition plays an important role in the regulation of transcription in response to environmental changes and in the virus-host relationship. Here we present the high-resolution structures of two such RNAP-inhibitor complexes that provide the structural bases underlying RNAP inhibition in archaea. The Acidianus two-tailed virus encodes the RIP factor that binds inside the DNA-binding channel of RNAP, inhibiting transcription by occlusion of binding sites for nucleic acid and the transcription initiation factor TFB. Infection with the Sulfolobus Turreted Icosahedral Virus induces the expression of the host factor TFS4, which binds in the RNAP funnel similarly to eukaryotic transcript cleavage factors. However, TFS4 allosterically induces a widening of the DNA-binding channel which disrupts trigger loop and bridge helix motifs. Importantly, the conformational changes induced by TFS4 are closely related to inactivated states of RNAP in other domains of life indicating a deep evolutionary conservation of allosteric RNAP inhibition.


2021 ◽  
Author(s):  
Finn Werner ◽  
Simona Pilotto ◽  
Thomas Fouqueau ◽  
Natalya Lukoyanova ◽  
Carol Sheppard ◽  
...  

Abstract The inhibition of RNA polymerases activity plays an important role in the regulation of transcription in response to environmental changes and in the virus-host relationship. Here we present the high-resolution structures of two such RNAP-inhibitor complexes that provide the structural basis underlying RNAP inhibition in archaea. The Acidianus two-tailed virus (ATV) encodes the RIP factor that binds to the inside the DNA-binding channel of RNAP, inhibiting transcription by occlusion of binding sites for nucleic acid and the transcription initiation factor TFB. Infection with the Sulfolobus Turreted Icosahedral Virus (STIV) induces the expression of the host factor TFS4, which binds in the RNAP secondary channel similarly to eukaryotic transcript cleavage factors. In contrast to RIP, TFS4 binding allosterically induces a widening of the DNA binding channel which disrupts trigger loop and bridge helix motifs. Importantly, the conformational changes induced by TFS4 are closely related to inactivated states of RNAP in other domains of life indicating a deep evolutionary conservation of allosteric RNAP inhibition.


2013 ◽  
Vol 19 (S2) ◽  
pp. 52-53
Author(s):  
D. Veesler ◽  
T.-S. Ng ◽  
A.K. Sendamarai ◽  
B.J. Eilers ◽  
C.M. Lawrence ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


2013 ◽  
Vol 87 (15) ◽  
pp. 8388-8398 ◽  
Author(s):  
L. J. Happonen ◽  
E. Oksanen ◽  
L. Liljeroos ◽  
A. Goldman ◽  
T. Kajander ◽  
...  

Virology ◽  
2011 ◽  
Vol 415 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Jennifer Fulton Wirth ◽  
Jamie C. Snyder ◽  
Rebecca A. Hochstein ◽  
Alice C. Ortmann ◽  
Deborah A. Willits ◽  
...  

2011 ◽  
Vol 85 (13) ◽  
pp. 6287-6292 ◽  
Author(s):  
J. C. Snyder ◽  
S. K. Brumfield ◽  
N. Peng ◽  
Q. She ◽  
M. J. Young

2011 ◽  
Vol 39 (1) ◽  
pp. 107-110 ◽  
Author(s):  
Jamie C. Snyder ◽  
Mark J. Young

We are examining the archaeal virus STIV (Sulfolobus turreted icosahedral virus) in order to elucidate the details of its replication cycle and its interactions with its cellular host, Sulfolobus solfataricus. Infection of Sulfolobus by STIV initiates an unusual cell lysis pathway. One component of this pathway is the formation of pyramid-like structures on the surface of infected cells. Multiple seven-sided pyramid-like structures are formed on infected cells late in the STIV replication cycle. These pyramid-like structures are formed at sites where the Sulfolobus S-layer has been disrupted and through which the cellular membrane protrudes. It is through the pyramid-like structures that virus-induced cell lysis occurs in the final stages of the STIV replication cycle. The pathway and process by which these unusual lysis structures are produced appears to be novel to archaeal viruses and are not related to the well-characterized lysis mechanisms utilized by bacterial viruses. We are interested in elucidating both the viral and cellular components involved with STIV lysis of its infected cell. In particular, we are examining the potential role that Sulfolobus ESCRT (endosomal sorting complex required for transport)-like proteins play during viral infection and lysis. We hypothesize that STIV takes advantage of the Sulfolobus ESCRT machinery for virus assembly, transport and cellular lysis.


2010 ◽  
Vol 84 (18) ◽  
pp. 9575-9583 ◽  
Author(s):  
Reza Khayat ◽  
Chi-yu Fu ◽  
Alice C. Ortmann ◽  
Mark J. Young ◽  
John E. Johnson

ABSTRACT Viruses utilize a diverse array of mechanisms to deliver their genomes into hosts. While great strides have been made in understanding the genome delivery of eukaryotic and prokaryotic viruses, little is known about archaeal virus genome delivery and the associated particle changes. The Sulfolobus turreted icosahedral virus (STIV) is a double-stranded DNA (dsDNA) archaeal virus that contains a host-derived membrane sandwiched between the genome and the proteinaceous capsid shell. Using cryo-electron microscopy (cryo-EM) and different biochemical treatments, we identified three viral morphologies that may correspond to biochemical disassembly states of STIV. One of these morphologies was subtly different from the previously published 27-Å-resolution electron density that was interpreted with the crystal structure of the major capsid protein (MCP). However, these particles could be analyzed at 12.5-Å resolution by cryo-EM. Comparing these two structures, we identified the location of multiple proteins forming the large turret-like appendages at the icosahedral vertices, observed heterogeneous glycosylation of the capsid shell, and identified mobile MCP C-terminal arms responsible for tethering and releasing the underlying viral membrane to and from the capsid shell. Collectively, our studies allow us to propose a fusogenic mechanism of genome delivery by STIV, in which the dismantled capsid shell allows for the fusion of the viral and host membranes and the internalization of the viral genome.


Sign in / Sign up

Export Citation Format

Share Document