turnip crinkle virus
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 17)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ranita Ramesh ◽  
Sean M. Braet ◽  
Varun Venkatakrishnan ◽  
Palur Venkata Raghuvamsi ◽  
Jonathan Chua Wei Bao ◽  
...  

Viruses are metastable macromolecular assemblies containing a nucleic acid core packaged by capsid proteins that are primed to disassemble in host-specific environments leading to genome release and replication. The mechanism of how viruses sense environmental changes associated with host entry to prime them for disassembly is unknown. We have applied a combination of mass spectrometry, cryo-EM, and simulation-assisted structure refinement to Turnip crinkle virus (TCV), which serves as a model non-enveloped icosahedral virus (Triangulation number = 3, 180 copies/icosahedron). Our results reveal genomic RNA tightly binds a subset of viral coat proteins to form a stable RNA-capsid core which undergoes conformational switching in response to host-specific environmental changes. These changes include: i) Depletion of Ca 2+ which triggers viral particle expansion ii) Increase in osmolytes further disrupt interactions of outer coat proteins from the RNA-capsid core to promote complete viral disassembly. A cryo-EM structure of the expanded particle shows that RNA is asymmetrically extruded from a single 5-fold axis during disassembly. The genomic RNA:capsid protein interactions confer metastability to the TCV capsid and drive release of RNA from the disassembling virion within the plant host cell.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1700
Author(s):  
Md Emran Ali ◽  
Sumyya Waliullah

The 35S promoter with a duplicated enhancer (frequently referred to as 2X35S) is a strong dicotyledonous plant-specific promoter commonly used in generating transgenic plants to enable high-level expression of genes of interest. It is also used to drive the initiation of RNA virus replication from viral cDNA, with the consensus understanding that high levels of viral RNA production powered by 2X35S permit a more efficient initiation of virus replication. Here, we showed that the exact opposite is true. We found that, compared to the Core35S promoter, the 2X35S promoter-driven initiation of turnip crinkle virus (TCV) infection was delayed by at least 24 h. We first compared three versions of 35S promoter, namely 2X35S, 1X35S, and Core35S, for their ability to power the expression of a non-replicating green fluorescent protein (GFP) gene, and confirmed that 2X35S and Core35S correlated with the highest and lowest GFP expression, respectively. However, when inserted upstream of TCV cDNA, 2X35S-driven replication was not detected until 72 h post-inoculation (72 hpi) in inoculated leaves. By contrast, Core35S-driven replication was detected earlier at 48 hpi. A similar delay was also observed in systemically infected leaves (six versus four days post-inoculation). Combining our results, we hypothesized that the stronger 2X35S promoter might enable a higher accumulation of a TCV protein that became a repressor of TCV replication at higher cellular concentration. Extending from these results, we propose that the Core35S (or mini35S) promoter is likely a better choice for generating infectious cDNA clones of TCV.


2021 ◽  
Author(s):  
Shaoyan Zhang ◽  
Rong Sun ◽  
Camila Perdoncini Carvalho ◽  
Junping Han ◽  
Limin Zheng ◽  
...  

Long noncoding RNAs (lncRNAs) of virus origin accumulate in cells infected by many positive strand (+) RNA viruses to bolster viral infectivity. Their biogenesis mostly utilizes exoribonucleases of host cells that degrade viral genomic or subgenomic RNAs in the 5’-to-3’ direction until being stalled by well-defined RNA structures. Here we report a viral lncRNA that is produced by a novel replication-dependent mechanism. This lncRNA corresponds to the last 283 nucleotides of the turnip crinkle virus (TCV) genome, hence is designated tiny TCV subgenomic RNA (ttsgR). ttsgR accumulated to high levels in TCV-infected Nicotiana benthamiana cells when the TCV-encoded RNA-dependent RNA polymerase (RdRp), also known as p88, was overexpressed. Both (+) and (-) strand forms of ttsgR were produced in a manner dependent on the RdRp functionality. Strikingly, templates as short as ttsgR itself were sufficient to program ttsgR amplification, as long as the TCV-encoded replication proteins, p28 and p88, were provided in trans . Consistent with its replicational origin, ttsgR accumulation required a 5’ terminal carmovirus consensus sequence (CCS), a sequence motif shared by genomic and subgenomic RNAs of many viruses phylogenetically related to TCV. More importantly, introducing a new CCS motif elsewhere in the TCV genome was alone sufficient to cause the emergence of another lncRNA. Finally, abolishing ttsgR by mutating its 5’ CCS gave rise to a TCV mutant that failed to compete with wildtype TCV in Arabidopsis. Collectively our results unveil a replication-dependent mechanism for the biogenesis of viral lncRNAs, thus suggesting that multiple mechanisms, individually or in combination, may be responsible for viral lncRNA production. Importance Many positive strand (+) RNA viruses produce long noncoding RNAs (lncRNAs) during the process of cellular infections, and mobilize these lncRNAs to counteract antiviral defenses, as well as coordinate the translation of viral proteins. Most viral lncRNAs arise from 5’-to-3’ degradation of longer viral RNAs being stalled at stable secondary structures. We report a viral lncRNA that is produced by the replication machinery of turnip crinkle virus (TCV). This lncRNA, designated ttsgR, shares the terminal characteristics with TCV genomic and subgenomic RNAs, and over-accumulates in the presence of moderately overexpressed TCV RNA-dependent RNA polymerase (RdRp). Furthermore, templates that are of similar sizes as ttsgR itself are readily replicated by TCV replication proteins (p28 and RdRp) provided from non-viral sources. In summary, this study establishes an approach for uncovering low abundance viral lncRNAs, and characterizes a replicating TCV lncRNA. Similar investigations on human-pathogenic (+) RNA viruses could yield novel therapeutic targets.


Author(s):  
Shaoyan Zhang ◽  
Rong Sun ◽  
Limin Zheng ◽  
Feng Qu

Long noncoding RNAs (lncRNAs) of virus origin accumulate in cells infected by many positive strand (+) RNA viruses to bolster viral infectivity. Their biogenesis mostly utilizes exoribonucleases of host cells that degrade viral genomic or subgenomic RNAs in the 5’-to-3’ direction until being stalled by well-defined RNA structures. Here we report a viral lncRNA that is produced by a novel replication-dependent mechanism. This lncRNA corresponds to the last 283 nucleotides of the turnip crinkle virus (TCV) genome, hence is designated tiny TCV subgenomic RNA (ttsgR). ttsgR accumulated to high levels in TCV-infected Nicotiana benthamiana cells when the TCV-encoded RNA-dependent RNA polymerase (RdRp), also known as p88, was overexpressed. Both (+) and (-) strand forms of ttsgR were produced in these cells in a manner dependent on the RdRp functionality. Strikingly, templates as short as ttsgR itself were sufficient to program ttsgR amplification, as long as the TCV-encoded replication proteins, p28 and p88, were provided in trans. Consistent with its replicational origin, ttsgR accumulation required a 5’ terminal G3(A/U)4 motif shown by others to be crucial for the replication of a TCV satellite RNA. More importantly, introducing a new G3(A/U)4 motif elsewhere in the TCV genome was alone sufficient to cause the emergence of another lncRNA. Collectively our results unveil a replication-dependent mechanism for the biogenesis of viral lncRNAs, thus suggesting that multiple mechanisms, individually or in combination, may be responsible for viral lncRNA production.


2021 ◽  
Author(s):  
Aayushi Shukla ◽  
Gesa Hoffmann ◽  
Daniel Hofius ◽  
Anders Hafren

Autophagy has emerged as a central player in plant virus disease and resistance. In this study we have addressed potential roles of autophagy in Turnip crinkle virus (TCV) infection. We find that compromised autophagy results in severe disease upon TCV infection, a phenomenon observed earlier for several other viruses as well. We also identified that autophagy provides resistance against TCV by limiting virus accumulation, but the exact mechanism driving this is currently unclear. However, as a viral counter-mechanism, our results reveal that the viral protein P38 can suppress autophagy, likely by sequestering ATG8s. This is a novel strategy for plant viruses, while it has been identified for other pathogen classes. Together, these results broaden our understanding of autophagy in plant virus disease, and strengthens our view of virus-specific adaptation to the autophagy pathway.


Virology ◽  
2020 ◽  
Vol 551 ◽  
pp. 64-74
Author(s):  
Chao Wu ◽  
Srinivasaraghavan Kannan ◽  
Chandra S. Verma ◽  
Kunchithapadam Swaminathan ◽  
Sek-Man Wong

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Gao ◽  
Peng Liu ◽  
Yuhan Yong ◽  
Sek-Man Wong

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2020 ◽  
Author(s):  
Xiuchun Zhang ◽  
Yadan Wu ◽  
Chunwei Zhang ◽  
Kunxin Wu ◽  
Zhixin Liu

Abstract Background: Virus-induced gene silencing (VIGS) is a useful tool for functional characterizations of plant genes. However, the penetrance of VIGS varies depending on the genes to be silenced, and has to be evaluated by examining the transcript levels of target genes. Results: In this report, we report the development of a novel VIGS vector that permits a preliminary assessment of the silencing penetrance. This new vector is based on an attenuated variant of Turnip crinkle virus (TCV) known as CPB that can be readily used in Arabidopsis thaliana to interrogate genes of this model plant. A CPB derivative, designated CPB1B, was produced by inserting a 46 nucleotide section of the Arabidopsis PHYTOENE DESATURASE (PDS) gene into CPB, in antisense orientation. CPB1B induced robust PDS silencing, causing easily visible photobleaching in systemically infected Arabidopsis leaves. More importantly, CPB1B can accommodate additional inserts, derived from other Arabidopsis genes, causing the silencing of two or more genes simultaneously. With photobleaching as a visual marker, we adopted the CPB1B vector to evaluate the relative importance of several known RNA silencing pathway genes in PDS VIGS. This approach allowed us to validate the involvement of DICER-LIKE 4 (DCL4) and ARGONAUTE 2 (AGO2) in PDS silencing. Notably, double-stranded RNA-binding protein 4 (DRB4), whose protein product (DRB4) commonly partners with DCL4 in the antiviral silencing pathway, was dispensable for PDS silencing induced by CPB1B. Conclusions: The CPB1B-based vector developed in this work is a valuable tool with tracable and visualizable indicator of the silencing penetrance for interrogating Arabidopsis genes, especially those involved in the RNA silencing pathways.


2020 ◽  
Vol 184 (3) ◽  
pp. 1482-1498
Author(s):  
Jin Hoon Jang ◽  
Ngoc Quy Nguyen ◽  
Bertrand Légeret ◽  
Fred Beisson ◽  
Yu-Jin Kim ◽  
...  

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Carlos Mata ◽  
Rebecca Chandler-Bostock ◽  
Andrew Scott ◽  
Valeria Lulla ◽  
Andrew Firth ◽  
...  

Recent developments in cryo-electron microscopy (cryo-EM) hardware along with continuously evolving software tools have led to the discovery of many novel structures that it was not possible to solve until now, resulting in what is termed “the resolution revolution”. In structural virology, it has also led to a re-evaluation of known structures. Most virion structures solved by X-ray crystallography or cryo-EM are focused on the capsid protein (CP) as a result of the application of icosahedral symmetry averaging to “improve” the electron density maps. However, this has the consequence that the intrinsic asymmetry of important components of virions, such as the viral genome and structural proteins lacking such symmetry, are masked. Single-stranded (ss), positive-sense RNA viruses are major pathogens in all kingdoms of life. Asymmetric cryo-EM structure determination of a major model virus in this class, bacteriophage MS2, reveals the limitations of a symmetrized view. As well as the presence and interactions made by the unique Maturation Protein, it also reveals multiple gRNA-CP dimer contacts corresponding to our previous prediction that dispersed, sequence-degenerate RNA motifs (Packaging Signals, PSs) play important roles during the virion assembly. Here, we describe how relaxing symmetry during structure determination can image such gRNA-PS contacts in a range of ssRNA viruses including the picornavirus Bovine Enterovirus-1, the alphaviruses Sindbis and Semliki Forest Viruses, as well as the plant virus Turnip Crinkle Virus. The revelation of these functionally important gRNA-CP contacts changes our fundamental understanding of assembly in these pathogens and may have further translational importance.


Sign in / Sign up

Export Citation Format

Share Document